SPARK 1.0
User's Manual

Simulation Problem
Analysis and Research
Kernel

Lawrence Berkeley National Laboratory
Ayres Sowell Associates, Inc.

Copyright © 1997-2000 Ayres Sowell Associates, Inc. Pending approval of the U.S. Department of energy. All rights reserved.

12/06/00

SPARK 1.0 User's Manual

Contents

IS NEN i e oV ek f o N 1
1.1 VWHAT IS SPARK 2.ttt ettt et e et eaveesseebeesbeebeesssssesssesseeaseenseenseesseessenseensesnsesnsessesanns 1
1.2 KINDS OF PROBLEMSccvviitieiteeteeteeereeueeeteeeteeseensesseesseesseeasessessssnsesseesseensesnsesssesseesseessesssesnsesneesnes 1
{L.3 DESCRIBING PROBLEMSFOR SPARK SOLUTION ..o 1
1.4 PORTABILITY AND USER INTERFACES........0ectiitiiitiiteireiseeiseesseesssessesssesssessssssessesssesssessssssessseesssesssenes 2
1.5 THE HISTORY OF SPARK L...oitiiitiiitiiitiiitiie it eeteeeteetesibesaeesaeesseesseessessssasseasseseenseensesssesssessnesseeseeseanes 3

BECTION 2 EXAMPLES.......coooieieeeteeeeeteeeet ettt eesee s s enenseseeansesenanseseensesesessnsesnssesesnssnsessssesnssesesas 5|
2.1 OVERVIEW AND TERMINOLOGYccuttieeeiuteeeeiureeeeiteeeeaisreeesaseeaassteeeaaassesesasesassnsssesassesesasesessnsesesanns 5
2.2 SIMPLE IMATH PROBLEMS......ceiiuiiiiiitiieeettieeeettieeeeiteeeeastteeeseuseeaessteseeanseeesanseeaeansseesanssesesansesesansseesann 6

D.2.1 ASNGIE ODJECE EXAMPIE........eeoeeeeieeeeeeee e ee e eteeeteeenveeeneeesneeeeneeesns 6
R.2.2 Arbitrary Input/Output Designationcocoes 8
D.2.3 Problems with Several ODJECESoiiiiiiiiiiiiiieecceeeee e ee e s beeereesbeeesseesabeesseeesns 8
P.2.4 Problems Requiring [terative SOIULTON.cc.eeeiieuuiiiieeiieieeieeeetieeeeeeeiesseeesesaeesessereassnrenesas 11

2.3 WELL POSED PROBLEMSeeieutiiieiteie ettt eeeee et eeeeetteeeeeteeaesateeaaeanteeesanneeeessseeeaansesesannseeesanseeenn 13
.4 CREATING SPARK ATOMIC CLASSES......utiiiieiieeeiteieeeetieeeeetteeeeeteeeaeaateeeaaseeaesasseeaaanresasanseeesarseeaan 14
D41 Class DEfINITION.........oiiiiiiiiiii ittt ettt e ettt eeeeesaeeesseeessseessseessssessseessssesnseesnsessnseesares 14
D.4.2 INverse FUNCHONS DEfINITION.oiiiiiiiiiiiccieccic et eetve et e e sbeeeaeeesreeesseeeseeenseesares 16

.5 MODELSOF PHYSIC_ZAL SYSTEMS....iie ettt ettt ee e e et eeeeeuteeeeenteeaeenbeeeaaanteeasannreeesanreeeeaseeanann 17
.5.1 Units, Valid Range, and [nitial ValUEsc.ccveiveiiiiiiiiiiecieeeeeeeeeeeeee e 17|
E.S.Z oY o T e 19
2.6 DIFFERENTIAL EQUATIONScovieeieietetsesesesesesesessesesasesessesssnsssnsnsnsssssssesssssssnsnessnssssasasssssssenenensnens 22
P.6.1 Numerical Solution of Differential Eguations .. 22
P.6.2 How SPARK Dealswith Differential EQUAtiONS...........c..cocveeeuvieiuieeeiieiieeeiiecveeeeee st 23
R.6.3 Solving a Smple Differential EQUation. ... 23|
P.6.4 SPARK Library Integrator ODjECt ClaSSESccuviiiuiiiiiiiiiieieieiieeeieeeveeeeeeereeesreeeeseeesseeesnes 26
P.6.5 Creating SPARK Integrator ObJECE ClASSESc.ueveieeueiiiieeiieeeetiieeeeteeeeeeeeeessiteeeseeeeeesseneeeas 27
2.7 A LARGER EXAMPLE: AIR-CONDITIONED ROOMccuvviueereerecereesereriesesreesesessesessaesesessesessseseennses 28

BECTION 3 ADVANCED TOPICS......ooouiveeeeeteieteteeseereeeettstsestsensteesensesssessesssessestessesssasssssenssssseseasens 37|
3.1 NUMERICAL INTEGRATION ISSUES.......ccvtiouiitiiteiiteeiteeiseeeseessesssesseesssesseesssenssessessssssesssesssessesssesnsesses 37
3.2 ITERATIVE SOLUTION AND BREAK VARIABLES.......ccuviitiitiitteiteeiteesteesseesseeseesseessesssesseessesssesssessesnees 38
3.3 HOW SPARK ASSIGNSVALUESTO VARIABLES.........ccuteitiiuveiteeiteeiteeeteeereeeseensseseeeseeeseesseesseensesseesnees 39
BB INMUAIZAION.oooooooooeeeeeereeeeeerseeeeereeeeerneeeeeereeeeereeeeeereeeeereeeeeereeeeereeeeereeeeereeeeeeeeecees 39

3.3.2 PrafiCliON. . .ueiiiiiiiieice ettt e ettt et e etesaeesaeeeaseeseesseenseenseebseseebeennesrsesnnsenneansersereens 40
3.3.3 UPTALING ..ot st eetee s teseaesesbeseanesessesenesssesesnessssesessesesnesesneeesnsessneeesnres 41
3,34 SOIULION ...ttt ettt eete et eetteeteeeteeteeetesnsesaeesseesseeseenseenseanseeseesseesseeseenseensesnseeseesseesrenns 41
B.3.5 Propagation ..o 42|
3.4 INPUT VALUES FROM FILESoiuiiitiiitiiitiitiitiiteeeteeeteeteeseessesssssseesssesseesssenssenssensesssesssssssessesssesnsesnses 43
3.5 IMACRO LINKSvtitiitietteitieeteesteesteeeteesesssssssesssesssenseesseessesssesssesssessesesnsssnssssssessesseenseenseensesssesseessees 44
3.6 _INTERNAL SPARK NAMES FOR VARIABLES (FULL NAMES OF LINKSOR PORTS) ..ovovciiiiiene 47
3.7 USING THE PROBE STATEMENT oo 49
3.8 SYMBOLIC PROCESSING.......ceueiiteeiueieteesseeeseestesseessesssesssssesssesssssssssssesssesssasssesssessessesssesssessesssesssessses 49
B.8.1 SMPIE SYMDOITC PIOCESSINGv.veeveeeeeeeeseereereeeesesererseseeeseseeessneneesnensesneneeesneneeesnenesesneeeesnee 50

SPARK 1.0 User's Manual

3.8.2 GENETALING AN INVETSB......iiiieeeeeee ettt e ettt e e st e e eaneeeesenensassnsesesasnsesesssnreesssesesan 51
3.8.3 CAVEALS.veeeeeeeeeteeeeetee ettt ettt e e e et eeee ettt e e ettt e eeeabeeeeeaneeeeabreaaeanteeaeeanrreaearreaann 51
E.g PREVIOUS VALUE VARIABLES, OR UPDATING VARIABLESFROM LINKS ..o 51|
.10 SOLUTION METHOD CONTROLeeiiiutiieiettiieietteeeeiteeeeeasteeeeasseessssssesasssesesanssssesasssssesssssesanssesesaseses 53
3.10.1 SPARK Problem COMPONENES.........cccceueiiieeeieiiieiieieeeeieesiieeeseeteieeessesssssseressssseresssssreesssseresas 53
3.10.2 DEFAUIT SEHINGS.ecovviiieieeeeieeetieeeee ettt e et e et e ettt eeaeeestreeereeenreesnreeasreesnreesnreesnseesnres 54
3.10.3 Component SOIVING MELNOUSc.ueiueeieieeeieeeceee et eeee e eeeereaereenrens 54
3.10.4 MatrixX SOIVING MEINOUS.ccviiiiiiiiiiiiiieceecee et eet e esteeesteeeseeessbeeeseesreeenseeeasssesseesares 56
3.10.5 Sopping Criterion for 1erative SOIULIONocoeeuuiiiieeeiiieeiiieeeeieeeeeeeeeeeeeeeeeeasseiaeeaas 57
3.10.6 Scaled Perturbation for Partial DeriVatiVES.............ccueeiueeeeeeiiieeeiecieeeceeeceeeeeeseveeeeeee e 58
B.10.7_Update Component Settingsat RUN TIMe ..o 59
B.11 DEBUGGING SPARK PROGRAMSoeveverrerresresressessessessssssssssssssssssnsnsnsnsnsssnsnsnsnsneens 59
B.11.1 ParSING EITOIS ...cccuviiiieiii ettt e e et s e sseressssesasasnnessseneresssssesesensnsreessnseresan 60
SR S = (V| o) = o) T T T PSP PP 60
B.11.3 Solution Difficulties. ... 60
B3.11.4 Trace File MECNANISIToiuviiiiiiieeeiee ettt e eteeeteeesteeebesessseeesesessseessssesnseesnsessnseesnres 62
3.11.5 Problem-level DiagnostiC REDOITS.......cc..uiiicueeieieiiiiieeeiieeeieeeetteeeeteeeseeeesesteeessneeesssneneeas 63
3.12 OUTPUT AND POST PRQCESSING .. 63
3.13 SNAPSHOT FILES AND RESTARTING SOLUTIONS.......ceeeeitiiieiiiiieeeeteieeeetteeeeeneeeestreeeeanreeesaneeeesarneeaas 64
3.14 RUN CONTROL FILEcciiiutiiiiiiiiiiitiieeeitteeeeeieeeesiteeeeeasteeesasseeeesasseeeaassesesannseeesasseseeansssesannseesssssees 65
3.15 USING SPARK LIBRARY FUNCTIONSIN AN ATOMIC CLASScciiitiieeeuieieeitieeeiieeeeesureeesanneeaesseeeeas 67
5.1 Error handling fUNCLIONS...........c.uveeeieeiieeeiee ettt eetee et eetveeetteesateeenreesbeeenreeenseeenrenas 67
%2 PrediCate fUNCHIONSccviiiieeciii ettt ettt et e eteeeeaveeeteeesaveeeseeesseeeseseseeeseeas 68
5.3 ACCESS FUNCHIONS.......eeiviiiieieectiieciteeetieecteeetteecteeetteeeteeeabeesebeeesbessteesnbessseesseseseentesenseensenan 68
B3.15.4 Math fUNCHIONSviiiiii ettt et eesteeesuseesseeesseeessseessseessneessseesnseesnsessseesnres 68
3.15.5 Access methods for the TArQUMENE CLaSS..........cc.eeiiieeeiiiieiieeeeieeeeieeeeeie e e e eeeeeassreneeas 63
BECTION 4 SPARK LANGUAGE REFERENCE.........cocioiiitiitictieeseesetssteessesesessesteessessssssnssesssssnens 71|
4.1 NOTATION USED IN THIS SECTION L.uiviiisis 7g
/1.2 SPECIAL CHARACTERSeuviiueeiteeiueeeseesseessesstessssssesssessssssesssssssssssssssesssesssenssenssenssessssssesssessesssesssesnses 71
1.3 NAMES AND OTHER STRINGS.......cittiitiiitiisiireeseeessenseesseessessesssesseesssesssesseesseesssesssessesssesssessesssesssessses 71
.31 RESEIVEL NAIMIES........ccuveiveeeteeeteeeeeete et eteeeteeete et e et eeteeeteeteenbesseesseesseesseesseenseensseseesseenseens 71
#.3.2 Rulesfor User Specified NameS. ... 72|

. 3.3 LITEIAIS . ..oiuiiiiiiiii ittt et e st e st e steeteesesaeeens e seenseenseehseehsesbe e beennesneesansennsenseereebeens 72

V1.4 COMMENTS. ... eeevteteeeteesteesseeseesseesseeaseessesssssssesssessenseenssessssssesssesssesssesesnsssnsssnsssssesseenseensesssesssessessnnes 72
4.5 COMPOUND STATEMENTS. oot 72]
1.6 ATOMIC CLASSFILE ...vicuviiuieitieiteeiteecteeeteeeteeeeeteeeteeeteeeteebessbesssesaeesseesseenseensesnsesssssseesseesseetessessesnees 73
L7 IMACRO CLASS FILEutiutiiutiiteeiteeiteeeteesteesessseesseessessseseesseessesssssssssssesssesssenssesssenssessesssesssessessseessesnses 73
1.8 PROBLEM FILEccuiiitiitiitiiiteeiteeiteeeteeeteetesteeeteeeteenseenseesseessesssesssesssesesnsssnsssnsesssenseensesnsesssesseesseesrees 74
1.9 PORT STATEMENT ..uveeuveetteeteeiteeiteeeteeeteeeseenseeseeessaeseeseesesnsesssesssesssesssesseenseenssenseeseesseesseesseessesnsesnees 74
4.10 PARAMETER STATEMENT .o 76
1. 11 PROBE STATEMENT00iuuiiutiiteeittiettesseestestesssessesssessssseessssssssssssssesssesssesssessessessesssesssesseesseessessses 76
1. 12 DECLARE STATEMENT ...uiitviitiiitieiteeiteetteseeeseeeseesseeseesesssesssesssssssesssesseesseesssesssessesssesssesseessesnsesses 77
113 LINK STATEMENT 1.uveeuviieieiteecteeiteeeteeeteeteeneeesseeseeeseenseensesnsesnsesseesseesseesseenseenssenseeseesseesseessenssesnsesnees 7]
.14 INPUT STATEMENT ..ecuviiuveiteeiteeiteeiteeeteeeteeseeseeeseeeseeaseesesssesssesssesssesseesseesessesssssssssseessesssesssesssesnees 78
.15 EQUATIONS STATEMENTciueiitiiitiiiteistietessesssesseessessesssesssessessssesssesssesssessesssesseessesssessesssesssessses 78
1.16 FUNCTIONS STATEMENT ...eetieitiiitietiireieeeseesssesseeseesesssesssesssssssesssesseesssesssessessesssesssessesssesnsesees 79
.17 INPUT FROM FILES......cuiiuviiteiitieitieeteeete et eteeteeeteeeteeeteetesnsesnsesseesssesseesseenseenssensesseesseesseessennsesnsesnees 79
IAPPENDIX A USING THE HVAC TOOL KIT ..coovoviteeeeeeteeeeeeeeeeteeeeeeeeet e eeneetenseetnenenerennsnenens 81|
A. L THE SPARK HYV AC TOOLKITueiiiitiiiiiitieieieieeeeiiteeeeasteeeesaseseesasseesasssssesasssseesassessesssesesansssessssssees 81
A .2 EXAMPLE USAGEoiiitiiiiitiiieetie et ee ettt e e eiteeeeeateeeeanteeaeesseeaeanseeaeansseeeannseeesanseeasansseesannseeessnsesanan 81
IAPPENDIX B PREFERENCE FILES........ccooooeieiititiiiiicieesteesetseesessesesessesssessessssssessssssesssssssesssssessssssens 87|
B.1 WHAT ARE PREFERENCE FILES? ...uiiiisiiiieiteisseiisisiestseetessssessssssssesessseesesseeeseseestssseeesseeesessesesererees 87|

SPARK 1.0 User's Manual

.2 USES OF PREFERENCE FILESIN SPARKcoiiiiiiiiiiiiiiiii ittt seetteet e e eseeatee e e e s s sesnebeeesesssasnnnres SZI

.3 HIERARCHICAL DATA .oviiiiiiiiiiitiiiiie ettt e sttt e e e e e sttt e e e e seababbeeeesssassssbeseaaassassssbbnesaassessnnren 87

B.4 PREFERENCE FILE FOR THE EXAMPLEuttttiiiiiiiiittettiisessiassssseesiessiasssssssstssstassssssstessiesissreseieassesasanes 88
REFE REN CES .11ttt it eet it teeeeteeeeeesteeeeetteeteLs e eeeteeee Lt ee e e L eE e eL e eetLeEeee e eeAeeeeeeee et e teeeee et et eeeresseeseeseeseeees 91]
[GLOSSARY OF TERM Siteeeeeeeeeeeeeeeeeteeeeeeeeeveeeevereneesereneesesenseseseseesesessesesessesesnssssnsessesesnssesnens 93|
N = 99|
NI = 103|

SPARK 1.0 User's Manual

Section 1 Introduction

1.1 What is SPARK?

Simulation of a physical system requires development of a mathematical model, usually composed of
differential and/or algebraic equations. These equations then must be solved at each point in time over
some interval of interest. The Simulation Problem Analysis and Research Kernel (SPARK) is an object
oriented software system to perform such simulations. By object oriented we mean that components and
subsystems are modeled as objects that can be interconnected to specify the model of the entire system.
Often the same component and subsystem models can be used in many different system models, saving the
work of redevelopment.

1.2 Kinds of Problems

Since nearly any physical or SPARK may be thought of as a genera differential/algebraic solver.
biological system can be This meansthat it can be used to solve any kind of mathematical
described in terms of a problem described in terms of a set of differential and algebraic
mathematical model, SPARK equations. The term "continuous system" is often used to describe this
can be used in many scientific class of problems. Typical examplesinclude building heating and

and engineering fields. cooling systems, heat transfer analysis, and biological processes.

While, in principle, any system can be described in terms of differential
and algebraic equations, there are many systems that are more easily
described in terms of discrete states. Typical examples include assembly
lines from the field of manufacturing engineering and queuing problems
from variousfields. SPARK is not designed for discrete state simulation
problems. However, there are limited facilities for handling discrete
events in otherwise continuous systems.

1.3 Describing Problems for SPARK Solution

Describing a problem for SPARK solution begins by breaking it down in an object oriented way (Nierstrasz
1989). Thisjust meansto think about the problem in terms of its components, with each component to be

Section 1 Introduction « 1

SPARK 1.0 User's Manual

represented by a SPARK abject. Then, amodel is developed for each component not already present in a
SPARK library. Since there may be several components of the same kind, SPARK object models, i.e.,
equations or groups of equations, are defined in a generic manner, called classes. Classes serve as
templates for creating any number of like objects that may be needed in a problem. The problem model is
then completed by linking objects together, thusindicating how they interact, and specifying data values
that specialize the model to represent the actual problem to be solved, and provide boundary values.
Section 2.2 has several examples (See page 9

Naturally, model descriptions must be expressed in some formal way. SPARK abject class models are
described in atextual language that is similar to other simulation programming languages except that it is
non-procedural. That is, it ishot necessary to order the equations, or to express them as assignment
statements. This property derives from the input/output free manner in which the object classes are defined,
and the use of mathematical graphs (McHugh 1990) to find an appropriate solution sequence.

In SPARK, the smallest programming element is a class consisting of an individual equation, called an
atomic class. Then, macro classes bring together several atomic classes (and possibly other macro classes)
into a higher level unit. Problem models are similarly described, using the atomic and macro classes, and
placed in a problem specification file. When the problem is processed by SPARK, the problem
specification file is converted to a C++ program, which gets compiled, linked and executed to solve the
problem for given boundary conditions.

Y ou must have access to a C++ compiler on the machine running SPARK. On Windows 95/98/NT
platforms, the default WinSPARK installation assumes that you have Microsoft Visual C++ installed, but
Borland, GNU, and Symantec compilers are also supported. Visual SPARK on Windows 95/98/NT
platforms normally use the MINGW implementation of the GNU C++ compiler, although the Cygwin
implementation has also been used. UNIX installations normally use the GNU compiler, but SPARK has
also been used with other compilers commonly available on Sun workstations.

While specifying problems in the SPARK language using existing classes isrelatively easy, writing SPARK
class models can be tedious. One necessary task is deriving the inverses for the class equation, i.e., closed-
form solutions for severa or al variables that occur in the equation. The labor of thistask is multiplied in
certain kinds of problems, such as those described in terms of partial differential equations. Such equations
have to first be expressed as sets of ordinary differential equations, replicated many times with dight
variations. To simplify these tasks, SPARK can be installed with symbolic tools, such as Maple (Char,
Geddes et al. 1985). With such tools the user need specify only the atomic class equation, from which all
necessary inverses and supporting C++ functions are generated automatically through symbolic
manipulation. For users without Maple, SPARK comes with its own symbolic manipulation tool that, while
very limited, can find inverses of many equations encountered in simulation practice. For more involved
problems, these symbolic tools offer a significant improvement in productivity. However, initialy it will be
more instructive for you to use SPARK directly, as we show in this Manual.

1.4 Portability and User Interfaces

SPARK isintended to be portable. The basic elements, i.e., the parser, setup program, and fixed elements
of the solver, will compile and run on nearly any platform for which thereisa C++ compiler. Intheinitial
release, executables, necessary source code, and graphical user interfaces are provided for the UNIX and
Windows 95/98/NT platforms. On both platforms, the graphical user interfaces allow text-based creation of
classes and problems using the SPARK language, as well as problem execution and results display. Post
processing for visualization of resultsis supported in both environments,

This User's Manual isintended to cover the basic principles of SPARK programming. To the extent
possible, it isintended to be independent of the platform. Consequently, examples are demonstrated using
the command line interface only. Separate Installation & Usage Guides provide instructions for the
individual platforms.

2 Section 1 Introduction

SPARK 1.0 User's Manual

1.5 The History of SPARK

Although a general tool, SPARK was developed for use in simulation of building service systems, e.g.,
heating and air-conditioning. Most usage up to the time of this writing has been on systems from this field.

The first implementation of SPARK, which solved only algebraic problems, was done at the Lawrence
Berkeley National Laboratory in 1986 (Anderson 1986). The basic ideas, including the graph-theoretic
aspects, were based on earlier work at the IBM Los Angeles Scientific Center (Sowell, Taghavi et al. 1984).
Buhl and Sowell extended the LBNL implementation to allow solution of differential equationsin 1988
(Sowell and Buhl 1988). The MACSYMA and Maple interfaces were developed by Nataf and Winkelmann
(Nataf and Winkelmann 1992), who also made many other improvements. Since that time, there have been
new developments. For example, the solver was revised to decompose the problem into separately solvable
components (Buhl, Erdem et al. 1993). Then in preparation for the initial public release, SPARK was
completely rewritten in 1995-96. In this rewrite a new class and problem description language was
implemented to improve modeling flexibility, and the solver was redesigned to improve solution speed. In
addition, several user interface tools were devel oped, including a simple symbolic manipulation tool.

Section 1 Introduction « 3

SPARK 1.0 User's Manual

Section 2 Examples

2.1 Overview and Terminology

In this section we devel op the main ideas and demonstrate the usage of SPARK in atutoria manner.
Mathematical problems are used for initial simplicity. Later sections extend these ideasto treat models
based on actua physical systems.

We begin by defining some terminology. The basic entity in a SPARK model is the object that consists of a
single algebraic equation and itsinterface or port variables. Objects are created by reference to a class,
which may be thought of as atemplate for the equation object. Asan example, consider the smple equation
for the sum of two real numbers:

a+b=c (2.1

The class that we might call sum would contain this equation, and its ports would consist of the variables a,
b,andc. Figure2.1lisapictorial representation of thisidea.

al __x

sum| b | —y

Figure 2.1 Sum Class Diagram

Note that we distinguish between an object and the class from which it is created. Thisis because there
might be need for more than one equation of thisform in a particular model. We can create as many
instances (objects) from the class sum as we wish. Moreover, classes are saved, allowing their use in many
different problems. Inthisway, SPARK reduces the model development work through code reuse.

Note also that the possibility of multiple instances of a class means that we must distinguish between the
symbols used in defining the class and the corresponding variable names occurring in the problem
definition. That is, if we wish to have the sum classrepresent bothx + y= zand r + s=t, it isobvious that

Section 2 Examples ¢ 5

SPARK 1.0 User's Manual

a must represent x in one place and r in another. We call variables such as x and r problem variables
because they relate to a particular problem being described. On the other hand, a, b, and c relate only to the
class definition and are called interface or port variables. It isaso common to refer to SPARK problem
variables as links because the keyword link is used to connect object ports, thus introducing the variable and
assigning to it aname. We will see thisin examples below.

2.2 Simple Math Problems

Although SPARK isintended for the analysis of complex physical systems represented as large systems of
nonlinear equations, both algebraic and differential, an understanding of the basic methodology can best be
obtained by working first with simple mathematical problems. We begin with the simplest possible
problem, asingle linear equation. This problem is then extended in steps to demonstrate more and more
SPARK features. Thiswill prepare us for dealing with more complex systemsin later sections.

2.2.1 A Single Object Example

As afirst exercise we will develop a SPARK solution for a simple math problem called 2sum. In 2sumwe
seek solutions for the equation:
X+y=1z 2.2)
Aswe saw in Section 2.1, thereis aclass in the SPARK foundation class library globalclass called sum
which we can use to solve this problem. As shown in Figure 2.1 (See page E its port variablesare a, b,

and ¢, and it enforces the relationship of Equation 2.1. Obviously, by associating a with x, b withy, and ¢
with z we can represent Equation 2.2 with an object of the sum class.

Equation 2.2 is a mathematical model involving three variables and one equation. To create awell-posed
problem, we have to define two inputs. For this example, let's specify x and y as input, so that zisto be
determined. The problem definition file 2sum.pr then has the following contents:

/* Problem Definition File
* for Sinple Math Probl em

* 2sum pr
*/
decl are sum s;
i nput x s.a report;
input y s.b report;
link z s.c report;
Inputs are the quantities Here the declare statement creates an object s as an instance of the class
known at the outset. Links sum. The input statements serve two functions. First, they associate the
are variables to be solved for. problem variables x and y with the corresponding object port variables

s.aand s.b respectively. Note that we employ the notation
name.variable to refer to the port variable of object name. Secondly,
they indicate that these problem variables are inputs, as opposed to being
determined by the solution process. Like input, the link statement
associates problem variables with object port variables. However, links
are variables to be solved for rather than inputs. The keyword report in
link and input statements means that the variable should be reported in
the SPARK output.

6 ¢ Section 2 Examples

SPARK 1.0 User's Manual

After creating 2sum.pr as shown above, you must create an input file called 2sum.inp with the following
contents:

2 X y

0 1 2

Here we see the format of a SPARK input file. The first line gives the number of input items, followed by
their symbols as defined by the input statementsin the problem specification file. The subsequent lines give
values for each input variable, preceded by the time at which these values apply. If the problemisnot a
dynamic one, i.e., we are seeking a solution for only one set of inputs, only two lines are required as shown
above. However, if we seek solutions at other time values, as many lines as needed can be given. Thisis
discussed further when we take up dynamic problems in Section 2.6 (See page .

Y ou can now run the problem with SPARK. The commands to do so differ somewhat depending on your
platform. For aWindows 95/98/NT WinSPARK installation, type:

bui | dsol ver 2sum pr spark. prf <enter>

Thisresultsin creation of an executable program called 2sum.exe Several other files are created, including
2sum.prf and 2sum.run which are needed to execute 2sum.exe. To execute the program for numerical
solution enter:

2sum 2sum prf 2sumrun <enter>

If you are working with a UNIX or any Visual SPARK installation, the equivalent command is:
runspark <enter>

This builds and executes the single allowed problem file in the current working directory. It can be
executed again without rebuilding with the command line;
2sum 2sum prf 2sumrun <enter>

Since SPARK is often used to solve dynamic problems, run control information is needed when the
program begins to execute. Thisinformation is provided in a problem run control file, probName.run,
normally generated automatically when you first run a new SPARK problem. The file has the format of a
SPARK preference file, discussed in Appendix B (See page .

The run control file for 2sum.pr, i.e., 2sum.run, is:

(

Initial Tine (0.0 ())

Fi nal Ti me (0.0 ())

Ti mel ncr enent (1.0 ())

Fi r st Report (0.0 ())
Report Cycl e (1.0 ())

Di agnosti cLevel (3())

I nput Fi |l es (2suminp ())
QutputFile (2sumout ())
Fi nal SnapshotFi | e (2sumsnap ())
Initial ShapshotFile (2suminit ())

)

Thefirst five keys define the interval over which the problem is solved and other time related data. The
Initial Time, Final Time, and Timel ncrement control the solution interval and the closeness of the solution
pointsin thisinterval. Since you may not wish to generate output at every solution point, you are allowed to
specify when reporting is to begin and the interval between reporting with FirstReport and ReportCycle
respectively. Because we are working a simple, algebraic problem here and we just want a single solution,
we specify Final Time to be the same as the Initial Time and FirstReport at time 0. DiagnosticLevel specifies
the amount of intermediate output wanted. Thisis discussed further in Section 3.11.5 (See page . The
remaining lines in the run control file specify various files related to the problem. We have already
discussed the 2sum.inp and 2sum.out files. Here we see that in the 2sum.run file you can specify where

Section 2 Examples ¢ 7

SPARK 1.0 User's Manual

these files are located in your directory structure. In the above example, they are specified to reside in the
current working directory. The other two files, Final ShapshotFile and Initial ShapshotFile are discussed in
Section 3.13 (See page.

When the problem runs, summary output is displayed on the screen, and the principal output iswritten to a
file called 2sum.out. For this problem the 2sum.out contains:

3 y X z

0 2 1 3
Aswith the input file, the first line gives the number of outputs, followed by the link names of each. The

second line gives the time, followed by the result values for each output listed in the preceding line. As
expected, adding 1 and 2 gives 3!

2.2.2 Arbitrary Input/Output Designation

With SPARK, the The preceding example showed the basic steps required to set up a SPARK
problem can be changed problem. However, it did not show SPARK's unique capabilities. One of
without changing the these capabilities is that we can easily change which variables are input and
model. which are output. That is, the problem can be changed without changing the

model. For example, if we areinterested instead in what y will be for
specified values of x and z, we simply designate z as input and y as link:

/* Add 2 nunbers together */

/* 2sum pr */
/* */
decl are sum s;

i nput x s.a report;

link y s.b report;
input z s.c report;

And, we must also change the input file to be:
2 X z
0 1 3

The resulting output file, 2sum.out, contains:
3 z X y
0 3 1 2

Thuswe see that y is calculated given zand x. Although shown here for a very simple problem with asingle
equation, this feature extends to more complex problems aswell. The only requirement is that the model
and the designated input variables must form a well-posed problem, i.e., one for which a solution exists.

2.2.3 Problems with Several Objects

The previous examples were problems with a single equation, thus requiring only one SPARK object. Most
real problemsinvolve more than one equation, and hence more than one object, raising the question of how
objects are interconnected in SPARK. The two examples below show how thisis done.

The problem we consider first is as follows:

8 ¢ Section 2 Examples

SPARK 1.0 User's Manual

D(l + X2 = X5
H
(K + X4 =X (2.3

B’<5+X6:X7

Obvioudy, each of these equations can be represented by an object of class sum. The diagramin Figure 2.2
shows how these objects would have to be interconnected to represent this problem.

X1 —a X5
— S1 E
X2 b a

—1 S3 E— X7
b

—
- _i S2 E—l_

x4 —b X6

Figure 2.2 The 4sum example.

The problem specification file for this problem contains the following code:
/* Add 4 nunbers together */

/* 4sum pr */
decl are sum si, s2,s3
i nput x1 sl.a report;
i nput x2 sl.b report;
i nput x3 s2.a report;
i nput x4 s2.b report;
link x5 sl.c, s3.a;
link x6 s2.c, s3.b;
link x7 s3.c report;

Observe that the first link statement connects the problem variable x5 to the port ¢ of sl and a of s3,
demonstrating the basic object interconnection method of SPARK. Any number of object ports can be
specified following the problem variable name, causing all to be equated to the single problem variable
defined in the link statement. The link, input and declare statements (plus a few others yet to be discussed)
form the SPARK language. The complete language is presented in reference form in Section 4 (See page

2.

Because there are four input statementsin 4sum.pr there must be a 4sum.inp file with values for the same
four variables. Thisfileisformatted as follows:

4 x1 X2 x3 x4

0 1 1 1 1
As before, the leading number in the first ling, 4, isthe number of inputs. It isfollowed by as many

symbols, corresponding to input variables as defined in 4sum.pr. The first number in the second line isthe
initial time, followed by values for each of the input variables.

The problem is built and executed using the same commands as for our 2sum example (See page E] The
results are placed in 4sum.out which is formatted like the input file:

5 x4 x3 X2 x1 X7

0 1 1 1 1 4

Section 2 Examples ¢ 9

SPARK 1.0 User's Manual

Several other files of interest are also produced when a SPARK problem is built and executed. First,
various files with the extension .log may appear in the workspace. Asyou might suspect, these contain any
error messages that may have been produced, as well as intermediate output from the numerical solution

step.

Also produced is the equationsfile, e.g., 4sum.egs. For complex problems exhibiting numerical difficulties,
it is sometimes useful to examine thisfile because it contains the computation sequence determined by
SPARK and used to solve the problem. For 4sum this file contains:

| nput s:
x4
X3
X2
x1

Conmponent O:
X6
X5
X7

sum(x3, x4)
sum(x1, x2)
sum(x5, x6)

In thisfile, inputs are listed first, followed by a sequence of assignments to problem variables, each
computed by a right-hand-side function reference. These functions represent the inverses of the underlying
class equation. In this case there is only one component, and it contains three function referencesin a non-
iterative sequence. Later, we will see that in more complex problems SPARK will break problems down
into several components that can be solved independently. Note that here we use the word “component” in
a graph theoretic sense, meaning a group of nodes and edges, i.e., equations and variables, that can be
solved together; these have nothing to do with physical components. Some components are strongly
connected, meaning that there are cyclesin that part of the graph. The practical significance of strongly
connected components is that the corresponding equations have to be solved simultaneously, by iteration.

Aswith the single object example, we can use the same model to solve different problems by changing what
isinput and what is solved for. For example, suppose we want to specify x5 and determine x1. The
problem fileisthen:

/* Add 4 nunbers together */

/* 4sum pr */
/* */
decl are sum sl, s2, s3;

link x1 sl.a report;
i nput x2 sl.b report;
i nput x3 s2.a report;
i nput x4 s2.b report;
i nput x5 sl.c, s3.a;

link x6 s2.c, s3.b;

link x7 s3.c report;

A suitableinput fileis:
4 x5 X2 x3 x4
0 2 1 1 1

After building and executing, the resulting 4sum.out fileis:
5 x4 X3 X2 X7 x1
0 1 1 1 4 1

And the equations file shows the solution sequence:

10 « Section 2 Examples

SPARK 1.0 User's Manual

| nput s:
x4
X3
X5
X2

Conmponent O:
X6
X7
x1

Just as you might do, based on Figure 2.2 (See page E] SPARK evaluates s2 followed by s3in the
“forward” direction yielding x6 and x7, then evaluates sl in the “reverse” direction to get x1.

sum(x3, x4)
sum(x5, x6)
di fference(x5, x2)

2.2.4 Problems Requiring Iterative Solution

Up to this point all of our examples have been such that non-iterative solutions could be found. In more
complex problems this may not be possible. For example, consider the set of equations below, in which ¢q
and co are given and Xy, X,, X3 and x, are to be determined.

2 / —
Eb(i+x3+x2+ X2_C1
X, = x,e™* -
0 . 24)
XX, + XX, + X, =G,

] _
X, = X;€7°

This set of equations does not have a closed form solution, and is very difficult to solve by any means. In
fact, with some values of ¢; and c,, it has no solution at all. However, with ¢; = 3000 and ¢, = 1 thereisa
solution and SPARK can easily find it.

The problem can be specified for SPARK exactly as for simpler ones. Figure 2.3 shows a SPARK diagram
with objects and interconnections.

conl
C I
x1 x1 x1
rl | r2
X2 X0 X2
X3—\
x1
3 X3 | X3 X3 (4
xal—X4 [
¢ con2

Figure 2.3 Four nonlinear equations.

In this case we have used four objects, each representing one of the equations. We assume for the moment
that there are classesr1, r2, r 3, and r 4 representing the equationsin the order given previoudly, presumed

Section 2 Examples ¢ 11

SPARK 1.0 User's Manual

to have been defined and placed in the class directory.ﬁ The SPARK problem file can then be constructed
asfollows:

/* Four nonlinear equations */
/* exanpl e. pr */
declare r1 r1 ;
declare r2 r2 ;
declare r3 r3 ;
declare r4 r4 ;

i nput conl rl.c report;
i nput con2 r3.c report;
link x1 ri.x1 match level = 0, r2.x1, r3.x1 report;
link x2 ri.x2, r2.x2 report;
link x3 ri.x3, r3.x3, r4.x3 report;
link x4 r3.x4, r4.x4 report ;

The two constants, ¢4 and ¢, in the equations, are defined as inputs conl and con2. In these input
statements, note that the port variables representing the ¢q and ¢, constants are called cinry and rs.
Similarly, in the link statements it is evident that the other port variables have the same names as the
corresponding problem variables. Normally, in the interest of code reuse, it is better to define a generic
class using local names for port variables, as we have done in the earlier examples. Here, however, where it
isunlikely that we will have need for other instances of these rather specialized objects, it would introduce
unnecessary confusion to employ different port and problem variable names. Hence the x; problem variable
islinked to the x; port variable of all objectsin which it occurs, i.e, ry, r,, and rs.

A new SPARK language keyword, match_level, isused in this problem. The purpose of this keyword isto
provide a hint to SPARK on how to match certain variables to certain equations. Here, by placing the
match_level = 0 after the r 1 port connection for x1 we are discouraging SPARK from using ther 1 object,
i.e, thefirst equation, to calculate x1. Although most often SPARK can do without such hints, there may
be times when you have particular insights into the numerical properties of the problem, and the
match_level keyword provides one mechanism for capitalizing on this knowledge. For example, experience
with the current problem indicated that the above match_level restriction leads to a better solution sequence.
Unfortunately, it is not always easy to discover appropriate matching preferences, but when you do develop
the insight for a particular problem it isimportant to be able to control SPARK in this manner. This subject
is discussed further in Section 3.11.3 (See page 0]

The results of running SPARK on the problem so described, with values of 3000 and 1 for the constants cq
and ¢, respectively, are shown below:

6 con2 conl x4 x1 X2 x3

0 1 3000 0.288576 2.9273 54.6738 0.454716

Naturally, the values reported for x; through x, satisfy the given equations.

The equations file, example.egs, shows how SPARK arrived at these anSNers:El

1 Wewill see how to define SPARK object classes in Section 2.4 (See page 14).

2 Asis often the case for nonlinear problems, this example has multiple solutions. The solution found will
depend upon the starting point in the iterative solution process.

12 « Section 2 Examples

SPARK 1.0 User's Manual

| nput s:
con2
conl
Conmponent O:
x4 = r4_b(x3)
x1 = r3 a(x3, x4, con2)
X2 = r2_b(x1)
[break] x3 =r1 _c(x1, x2, conl)

= x3 [predictor]

We see there is a single component (called " Component 0") in the solution, meaning that this problem does
not allow partitioning. Within this single component, the function r4_b(x3) represents object r4, i.e, the
fourth equation in (2.4), solved for x4 in terms of x3. The value returned by the function is assigned to the
x4 problem variable. Similarly, r3_a(x3, x4, con2) represents object r3, i.e., the third equation, solved for
x1, r2_b(x1) isr2 solved for x2, and finally r1_c(x1, x2, conl) isr1 solved for x3. It is apparent that these
assignments form a cycle, i.e., x1 must be known to get x3, but x3 must be known to get x1. That is, the
component is strongly connected. Recognizing this, SPARK has selected x3 to break the cycle, i.e., avalue
of x3 is guessed to start an iterative solution process. Thus after evaluating r1_c (using the guessed value of
x3 to get x4 and then x1 and x2) SPARK will use a prediction method for estimating a new value of x3 and
repeat the calculations from the first assignment. Thiswill continue until the predicted and calcul ated
values of x3 agree to within the SPARK precision, which defaultsto 10°. At first, prediction isdonewith
the Newton-Raphson method. If convergence is not achieved, alternate methods can betried. Usually,
convergence is obtained with the Newton-Raphson method.

The above functions are based on the respective object class equations. By chance, r4_b happensto be the
way the r4 equation was originally expressed, i.e., asaformulafor x4 in terms of x3. However, r3_aisthe
r3 object class rearranged symbolicaly, i.e.,

- 3
X = (Cp = XXy =X;) 1 X,
Thisiscalled an inverse of the object. Part of the task of developing a SPARK class is performing these

symbolic inversions of the given equations, and embedding them in C++ functions. Thisisdiscussed in
Section 2.4.2 (See page @9

2.3 Well Posed Problems

In Section 2.2.2 (See Page 8) we saw that SPARK allows us to change which problem variables are input
and which are to be solved for without changing the underlying model. Thisflexibility isthe result of
specifying object models without a priori specification of inputs and outputs (Sahlin and Sowell 1989).
Thus we were able to solve for X;, X5, and X, in the example Equation 2.3 (See Page given x, through x,,
or by asimple change of input and link designations solve for x;, X, and x,, given x,, X,, Xy and Xz.

It would be grand if we could say that this selection of the input and output sets was completely arbitrary.
For example, in the example of Section 2.2.3, Equation 2.3 (See page , there are 3 equations (objects) and
7 variables, so one might hope that any set of 4 inputs could be used to determine the remaining 3 variables.
However, we are constrained by what is mathematically possible. In many problems there are sets of inputs
that will not define a problem that has a solution. For example, if we specified x,, X5, X,, and xg it is
impossible to determine a solution. From Figure 2.2 we see that if x; and X, are both specified then x;
cannot be specified. Moreover, there is no way to determine x,, X;, and x., given only X;. Mathematically,
aproblemissaid to be well posed if it admits a solution. Thus with thisinput set we have anill posed
problem.

Section 2 Examples ¢ 13

SPARK 1.0 User's Manual

Naturally, SPARK has no ahility to solveill-posed probl ems.El In the case here, SPARK can immediately
determine that the problem is not well posed; specifically, it discovers that there is no possible matching of
equations and variables. Other forms of ill posedness cannot be discovered until a numerical solutionis
attempted. In such cases alack of convergence will be reported. Unfortunately, however, lack of
convergence also may be the result of other numerical problems, such as improper starting values, so we
cannot always conclude that this meansill posedness. Problems of this nature are all too familiar to those
who routinely work with nonlinear systems of equations. Often, insights afforded by knowledge of the
physical problem under analysis suggest ways to fix the numerical problem. In seeking to resolve these
difficulties, we should be motivated by the realization that proper mathematical models of physical systems
are well posed. Otherwise, the physical system could not behave in the observed way.

In summary, SPARK offers a method for specifying and solving sets of equations, provided solution is
possible. But it should be no surprise that it cannot solve insoluble problems, and numerical difficulties
may be encountered as they would be in other solution methods.

2.4 Creating SPARK Atomic Classes

The examples so far have made use of existing SPARK object classes. In practice, it is often necessary to
create new object classes to meet special needs. This can be done either by hand, or with symbolic tools
such as the SPARK symbolic solver, or third-party tools like Maple, Mathematica or MACSYMA. Here we
will see the manual process. Thiswill allow you to better understand the use of the symbolic tools, as
discussed in Section 3.8 (See page 9]

2.4.1 Class Definition

Creating a SPARK object isatwo step process. First, you must create the object class definition. Second,
the inverse functions required by the class must be expressed in C++ following the SPARK function
protocol. The class definition and the supporting C++ inverse functions are stored in the same file with a
.cc extension. These steps are demonstrated below for the sum atomic class.

/* SPARK sum cl ass definition */
#i f def SPARK PARSER

PORT a "Summand 1";
PORT b "Summand 2";
PORT ¢ "Sunt';
EQUATI ONS {
c =a+b;
}
FUNCTI ONS {
a =difference(¢, b);
b =difference(c, a);
¢c =sum a, b);

}
#endif /* SPARK_PARSER */

#i ncl ude "spark.h"
/* "difference" inverse function*/

#defi ne a ar gs[0]
#defi ne b args[1]
#defi ne c result

3 Indeed, it is contradictory to even suggest it!

14 « Section 2 Examples

SPARK 1.0 User's Manual

doubl e di fference(ArgLi st args)

doubl e result;
c =a - b;
return result;

#undef a
#undef b
#undef c¢
/* "sunl inverse function*/
#def i ne a ar gs[0]
#def i ne b args[1]
#def i ne c result
doubl e sun{ ArgList args)
{
doubl e result;
c =a+ b;

return result;

#undef a
#undef b
#undef c¢

As shown above, it is customary to begin a class with comments, to describe what it does. After the
comment header comes the body of the class definition. Thisis placed within C-style #ifdef and #endif so
the file can be processed both by the SPARK parser and the C++ compiler.

Thefirst part of the class definitionisalist of the ports. It isthrough these ports that objects of the class
communicate with other objects. Although the port statement has additional optional clauses, the only
required part is the name of the port variable. Here, we also provide a description string that is used for
error reporting. The port variable name can be arbitrarily chosen and of any length and is placed following
the port keyword. Note that throughout the SPARK language user selected names are case sensitive.
However, keywords of the language are not. Thus either port or PORT will do, but a and A are considered
different port names. Like all SPARK statements, the port statement can span multiple lines if necessary.
Each port statement ends with a semicolon.

After the port declaration, the equation for the class can be given in the optional equations block.
Although SPARK atomic classes presently have a single equation, the possibility of multiple equationsis
allowed for with the compound statement using braces, equations{...} E|

Following the equationsis the functions {..} compound statement. A function for calculating each port
variable can be given between the braces. Here we define functions for calculating each of the three port
variables. Normally, thisisthe best practice, sinceit allows SPARK greatest flexibility and efficiency in
devising a solution strategy for various problems in which the class might be used. That is, some problems
may require c to be determined in terms of a and b, whilein othersit may be preferred to calculate b given
aand c. Aswe shall see below, each function is an inverse of the object equation.

For complex equations, some inverses may be difficult or impossible to obtain. Or, it may be that special
knowledge about the problem under investigation suggests that a particular inverse should not be used,
because, for example, it might lead to numerical difficulties. For these reasons, SPARK allows you to omit
unavailable or unwanted inverses. For example, we could simply omit the function for calculating a from
the sum class. Should the need to calculate ¢ from a and b then arise in some problem using the class,
SPARK would have to perform the calculation iteratively.

4 The equations block is optional since SPARK currently does not process it. Future releases may
automatically generate the C++ functions based on the equation block.

Section 2 Examples ¢ 15

SPARK 1.0 User's Manual

2.4.2 Inverse Functions Definition

After the class definition comes the definition of the inverse functions. These functions, supporting the
SPARK class definitions, are expressed as C++ functions. Although some familiarity with C++ would be
helpful here, you should be able to understand the discussion with background in any similar language.

The basic structure of an inverse function in a SPARK atomic classis:
doubl e funct _nanme(ArgList args)

/1 Code for calculating the result fromthe argunents,
/1l returned as a doubl e.

}

The arguments must be passed as an array of type Ar gLi st. However, it is customary to alias elements of
this array to the symbols used in the equation. Also, theresult is aliased to the symbol for the returned
variable. This practice not only makes the functions easier to read (and write!), but also simplifies their
automatic generation with symbolic tools. Notethe#i ncl ude "spar k. h" which (indirectly) provides
the definition of Ar gLi st F]

In our sum example above we used the C preprocessor #define directive to alias function arguments.
However, there are alternative ways to do this that take advantage of advanced C++ language features, for
example, reference variables and the const qualifier. A reference variable is declared with a preceding &
and isinitialized in the declaration, e.g.:

doubl e & = vy;

meaning that the identifier x is merely an alias for a previoudly declared identifier y; there is no separate
storage location for x. If const precedes the declaration, the reference variable cannot be changed from the
initialized value. Consequently, a const reference variable is functionally equivalent to a#define constant.

With these features we can write the previous function definition for sum, omitting the #define ‘s, as
follows:

doubl e sun{ ArgList args)

{
const double & = args[O0];
const double & = args[1];
doubl e result;
double & = result;
c = a + b;
return result;

}

Thisis functionally equivalent to the previous code, but has the advantage of allowing type checking by the
compiler, and automatic type conversion when needed. The latter isimportant if the argument happensto
be used as an actual argument to another function that is called within the SPARK function. When #define
is employed in this case, most compilers will not be able to properly determine the function argument type.

Y et another way to express a SPARK inverse function in C++ issimilar to the above, but does not use
reference variables on the arguments:

5 More precisely, Ar gLi st isdefined as a pointer to the TAr gument classin value.h.

16 ¢ Section 2 Examples

SPARK 1.0 User's Manual

doubl e sun{ ArgList args)

{
const double a = args[O0];
const double b = args[1];
doubl e result;
double & = result;
c = a + b;
return result;

}

The difference between these two stylesisthat in the latter thereislocal storage for the variablesa and b,
and the arguments are copied into these locations every time the function executes, while in the former there
is no such storage or copying. The compiler will generate code that refers to the data where it is stored in
the caller. Thusthe former isin principle more efficient. However, cursory testing has failed to show
significant empirical differences.

SPARK functions can be as simple as the above example, or quite complicated. The full expressive power
of C++ isalowed. Note also that code for existing models can be integrated by means of a function call.
Furthermore, by following the rules for mixed language programming in your environment, the referenced
functions can be in FORTRAN, Pascal, or assembly language. The principal requirement isthat asingle
result must be returnedEl Care should also be taken that the function not depend upon retained state, i.e.,
the value of alocal variable from a previous call, since a SPARK problem may instantiate more than one
object using it. Perusal of some of classes in vspark\global class and hvactk\class directories may be
beneficial before beginning development of complex classes of your own.

2.5 Models of Physical Systems

The previous examples were purely mathematical in nature. They allowed us to discussthe basicideasin
SPARK, unencumbered by details. Here we take up some of the other issues that arise when modeling
physical systems. In particular, we show how SPARK handles the problem of unit consistency, and range
of valuesfor variables. Also, we show provision in SPARK for modeling at alevel higher than individual
equations. Then, using these new ideas, we show the development of a SPARK model for a system of
modest complexity.

2.5.1 Units, Valid Range, and Initial Values

When simulating real physical systems, there must be consistency in the units of measure throughout the
problem. Interms of a SPARK problem specification, this means that the units of a problem variable linked
to an object port must be the same as the units assumed for the port variable when the object class was
defined.

SPARK has alimited capability to ensure unit consistency. Thisis provided by associating an optional unit
string with each port. Then the SPARK processor can check and report an error if you inadvertently
connect variables of different units. Also, you can giveinitial, minimum, and maximum values for the port
variable. For example, the cpair.cc class from the HVAC Toolkit has a port for the specific heat coded as
follows:
port CpAir "Specific heat of air" [J/ (kg dryAir*deg O]

init = 1.0 mn=0.01 nax = 5000.0;

6 Future releases of SPARK may allow multivalued objects, removing this restriction.

Section 2 Examples ¢ 17

SPARK 1.0 User's Manual

The unit string is placed in square brackets[...]. Any connection to this port will have to have an identical
units string. The min and max values have the obvious meaning; run-time warnings are issued when the
value isoutside thisrange. Theinit value is used whenever SPARK needs a starting value and none is
provided elsewhere. For example, if the associated variable happensto be a break variable the very first
iteration will use the init value of 1.0 for CpAir.

In order for SPARK units checking to work to your benefit you must define a consistent set of units. Table
2.1 shows the SI units used in the HVAC Toolkit (See \ppendix A Using the HVAC Tool Kitlon page Bdj.
Other consistent sets could be used instead. Note that the units and value ranges given in Table 2.1 are not
built into SPARK; they are simply the units employed in the HVAC Toolkit class library. However, they do
serve as an example of a consistent set of units. When developing SPARK models you have the choice of
adhering to these units, or developing your own library with whatever units you choose. Obviously, you
should be consistent with whatever unit system you choose. Otherwise, you will have to implement special
unit conversion objects when your objects are connected. The init, min, and max values should be set as
appropriate for each port.

Table 2.1 SPARK Units (SI) used in the HVAC Toolkit.

Unit String Description Initial Minimum Maximum
[-] Unspecified 0. -1000000. 1000000.
[Jkg_dryAir] Enthalpy, air 25194.2 -50300.0 398412.5
[Jkg_water] Enthalpy, water 25194.2 -50300.0 398412.5
[kg_water/kg_dryAir] Humidity ratio .002 0.0 0.1
[kg_dryAir/s] Mass flow rate, air 10000. 1000. 1000000.
[kg_water/s] Mass flow rate, water 10. 0. 1000.
[deg_C] Dry bulb temperature 20. -50. 95.
[mM"3/kg] Specific volume, fluid 1.0

[m"3/kg_dryAir] Specific volume, air 0.8332 0.6 1.6
[kg/M3] Ratio of total (air plus 1.2026 0.6 1.8

moisture) mass to volume

[Jkg] Enthalpy, steam

[J(kg*deg_C)] Specific heat, fluid 1.0 0.01 5000.0
[J(kg_dryAirtdeg_C)] Specific heat, air 1.0 0.01 5000.0
[kg/q] Massflow rate, fluid 0.0

[M"3/9] Vdurdricflonraefiud 1

[m] Distance 1

18 « Section 2 Examples

SPARK 1.0 User's Manual

[m"2] Surface area 0.

(W] Power 1 -10000 10000
[Pa] Pressure 101325 0 110000
[W/deg_C] U*A, heat transfer 0 -1.0E6 1.0E6
[s] Time, seconds 0.0 0 1.0E30
[fraction] Any ratio 1.0 0.0 1.0
[scalar] Any non-dimensional 1.0 -1.0E30 1.0E30

To demonstrate, consider the sercond.cc class from the HVAC tool kit, which models two conductorsin
series. The ports are defined as:

PORT U1 "Conduct ance 1" [Wdeg C;
PORT U2 "Conduct ance 2" [Wdeg C;
PORT UTot "Overal |l conductance" [Wdeg C;

Then, when the sercond classis used in a problem definition you have to give matching unit strings at each
link or input statement for the problem variables connected to the ports of sercond:

decl are sercond sc;

i nput UAl sc. U1 [Wdeg (] report;

i nput UA2 sc. U2 [Wdeg (] report;

link UATotal sc. UTot [Wdeg C report;

The SPARK parser can then check to be sure you have not made a units error; if the units string in alink or
input does not match those of all port variables in the same statement, a units error will be reported.

There are times when you may not want strict enforcement of unit consistency. For example, thesum
object classisused in many places, sometimes adding heat flux and other times mass flow rates. If we
insisted on strict unit consistency, we would have to have a separate sum class for every different case. To
avoid this problem, and to allow for problems where units are not important, there is an unspecified unit
identifier. Units on aport are unspecified when you do not give any unit information, or when you
explicitly declare unspecified units with [-] as the unit identifier. When a port has unspecified units, no unit
checking is done on links to that port.

2.5.2 Macro Objects

Because SPARK uses a computation graph based on individual problem variables and equations, the
SPARK abject must be asingle equation. While thisis an advantage for efficient solving, the disadvantage
is the tedium of defining alarge system model entirely in terms of individual equations. When modeling
physical systems, it is sometimes more convenient to work in terms of larger elements, such as models of
physical components or subsystems. Such models most often will involve several equations and variables
rather than one.

We have aready mentioned in Section 2.4.2 (See page @) that one way to include more complex modelsis
by placing the equations within the C++ functions required by ordinary SPARK atomic classes. However,
thisisavery limited idea. One limitation isthat only a single result can be communicated to the rest of the
problem, even though many variables may be determined in the process. Another isthat the user becomes

Section 2 Examples ¢ 19

SPARK 1.0 User's Manual

responsible for devising an algorithm for the function, thereby bypassing one of SPARK's most unique
capabilities.

Macro classes et you to The macro class provides a better mechanism for allowing more complex
work at a high level of SPARK classes. It alows multiple atomic classes, and even other macro
abstraction, while classes, to be assembled into asingle entity for use by the model builder.
allowing SPARK to Macro classes are used in problems or in other macro classes exactly like
employ efficient, equation- atomic classes, i.e., by use of the declare keyword. However, when

based solution strategies. processed by the SPARK parser, any declared macro objects are separated

into atomic objects so that the graph-theoretic solution methods can be
applied in the normal manner. This allows you to work at a high level of
abstraction, while allowing SPARK to employ efficient, equation-based
solution strategies.

As an example of the need for a macro class, consider the flow of air in a duct network, such as might occur
in aheating system for abuilding. In simulation of systemslike thisthereis a need for models of various
components such as diverters that split the flow into two streams and mixers that merge the flow of two duct
sectionsinto one. Here, let's focus on the mixer and devise amodel for it in the form of a SPARK macro
class.

The diagram in Figure 2.4 shows the mixer component.

m, >
h

f

m, h,

Figure 2.4 Dry air mixer.

The air duct mixer model must include two laws from physics: conservation of mass and conservation of
energy. These can be expressed in the following equations:

[, +m, =m,

0 h =mh (2.5)
omh, + mph, =m;h,

where m represents mass flow rate and h represents the enthal py of the air streams. The subscripts 1 and 2
represent the conditions at the two inlets, and 3 that at the outlet.

To construct a macro object class for the mixer we shall assume that we already have object classes for the
mass and energy balance equations. Actually, the mass equation can be represented with the familiar sum
class. Alsointhe SPARK object library there is an object class called balance that represents equations
like the enthalpy one. The port variables analogous to m and h are m and q respectively.

The macro class will connect the constituent classes exactly as if we were creating a problem definition file.
Congtituent class port variables that are to have the same meaning in the context of our new macro class are
linked together, forcing equivalence. Those that are to be available for interfacing to problems or other
macro classes are "elevated," i.e., made port variables of the macro class.

Figure 2.5 shows this idea and serves as a guide in writing the macro class. Because al represent the same
guantity, the macro port variable m1 must be connected to the a port of the sum class and the m1 port of

20 ¢ Section 2 Examples

SPARK 1.0 User's Manual

the balance class. Other port variables are linked in asimilar manner. The SPARK expression of thisis
shown below.

-
hl | _‘E L {m3 ——
m1l r
——1{m2 ql BEAEE

— Ihp 192

Figure 2.5 Mixer macro class diagram.

/* SPARK M xer Object Macro d ass

*

*/
port nl "Stream 1 nass flow rate" [kg_ dryAir/s];
port n2 "Stream 2 nass flow rate" [kg_dryAir/s];
port nB "Stream 3 nass flow rate" [kg_dryAir/s];
port hl "Stream 1 enthal py" [J/ kg_dryAir];
port h2 "Stream 2 enthal py" [J/ kg_dryAir];
port h3 "Stream 3 enthal py" [J/ kg_dryAir];
decl are sum s;
decl are bal ance b;
link massl .nml, s.a, b.nml
link mmss2 .n2, s.b, b.nR;
ink mss3 .nmB8, s.c, b.m
i nk enthal pyl . h . q1;
i nk enthal py2 .h2, b.qg2;
i nk enthal py3 .h3, b.q;

It will be observed that thisis very much like a problem definition. The principal differenceis the absence
of inputs. Also, note that a macro class has ports, whereas a problem does not. Ports provide the interface
to the outside. That is, when an object of this classis used, connections will be madeto itsports. The
internal links, on the other hand, are not exposed to the outside at all. 1f you want a variable represented by
amacro classlink to be available for outside connections, you must connect it internally to aport. For
example, the line:

link massl .nml, s.a, b.nml;

means that the link named massl connects the m1 port of the mixer macro classto the a port of sand the
m1 port of b.

Note the dot (.) in front of the first connection following the link namesin the above example. The
rationale for the dot syntax is based on the general connection notation x.p, where we are referring to the p

Section 2 Examples ¢ 21

SPARK 1.0 User's Manual

port of x object. When the port in question belongs to the macro class being defined, as opposed to one of
its constituents, the class name is that of the very class we are defining, and therefore is not expressed.l]

The similarity between macro classes and problems makes it common practi ce when developing a macro
classtofirst test it asaproblem. For example, you could develop the mixer class as a problem, savingitin
afilewith .pr extension. Once it is working properly, you simply change the inputs to links, add ports for
the variables needed at the interface, connect the corresponding links to these ports, and save it asa.cmfile.

Y ou may have noticed in the above example that the name of links, e.g., massl, are not used anywhere.
Thisis because we express the internal connections entirely in terms of the class and port names, asin s.a,
or with an implied class name and port name asin .m1. Because link names are not used, they are optional
when defining macro classes. That is, we could write:

link .ml, s.a, b.m;

instead of the previous statement with exactly the same effect. In contrast, link names are required for
problems, as these are the names by which we know the problem variables. Further discussion of link
names s provided in Section 3.6 (See page .

Note that we have included unit strings in the ports. Thiswill prevent you from connecting inappropriate
links to objects of the mixer class. Also, we could have placed unit stringsin the links to allow unit
checking of the links to the ports of the classes which are used in the macro. We elect not to do so here,
however, because both sum and balance are mathematical classes with generic ports.

Finally, note that macro classes are entirely equivaent to normal SPARK classes in terms of usage. They
can be used in creating problem specification files, or in building other macro classes. The SPARK parser
recursively expands the macro objects asit generates the solver code.

2.6 Differential Equations

Thus far we have focused on problems with only algebraic equations. However, many simulation problems
are dynamic in nature and involve differential equationsaswell. That is, some of the problem variables
appear as derivatives with respect to time. In this Section we see that SPARK is capable of representing
and solving such problems. We begin with a brief review of numerical methods used in solving ordinary
differential equations.

2.6.1 Numerical Solution of Differential Equations

Numerical solution methods for differential equations start with given initial values of dynamic variable@
and attempt to project to a new solution a short time later. When the differential equation is part of alarger
system of equations the entire set must be solved at each point to ensure accuracy. The processisthen
repeated, with the newly calculated values becoming the basis for the next projection forward. The amount
by which time is advanced at each projection is called the time step, referred to as Timelncrement in the run
control file. Generally speaking, the time step hasto be small in order to achieve sufficient accuracy of the
solution. Since simulations are often carried out over long periods of time, many small time steps are
required. Computational efficiency is therefore very important.

7 In some object oriented languages, such as C++, the name of the class being defined is known internally
asthis. In SPARK we chose to have the name this be understood rather than expressed.

8 Here we shall call variables appearing in differential form dynamic variables

22 « Section 2 Examples

SPARK 1.0 User's Manual

The projection is done by means of an integration formula involving current and/or past values of the
variables and their derivatives. For example, the simple Euler integration formulaf is:

X= f(xp,)'(p) =X, +hx, (2.6)

where x is the dynamic variable, X isits derivative with respect to time, and h isthe time step. Note that
the Euler formulainvolves variable and derivative values only from the previous time, indicated by the
subscript p. Thisiscalled an explicit formula because it gives the new solution explicitly, i.e., without
reference to unknown values at the end of the time step. On the other hand, some integration formulas do
involve values of the dynamic variables at the new time, i.e.,

X = f(X,,X,,%,X) 2.7

Such formulas are called implicit because they involve values at the new point as well as past val uesEl
Obvioudly, iteration is required for implicit integration formulas, while not for explicit integration formulas.
The aim of the more complex formulas is to get improved accuracy and numerical stability with larger time

steps.

2.6.2 How SPARK Deals with Differential Equations

SPARK deals with differential equations by introducing object classes to represent integration formulas.
These can be from the SPARK globalclass library, or user defined. Y ou can define many different kinds of
integration object classes, ranging from simple explicit formulas such as Euler’s to complex implicit
formulas used in predictor-corrector methods. Unlike other simulation languages, SPARK even allows you
to use different integration formulas in different parts of the same problem.

Below we will learn how to solve asimple differential equation. We will first use integrators from the
SPARK library, and then see how integrator object classes are created. In Section 2.7 (See page this
will be extended to a more complex problem with mixed algebraic and differential equations.

2.6.3 Solving a Simple Differential Equation

Asasimple example, consider the differential equation:
X+ax=b; X(0) = X, (2.8)

where X is understood to be the derivative of x with respect to time, t, the independent variable. We see
this to be awell-posed problem; given @, b, and X, it can be readily solved for x(t).

To achieve anumerical solution in SPARK we view the derivative as a separate dependent variable. In
order to preserve the balance between equations and variables, this additional variable requires an
additional equation to be added to the set. An integration formula provides this needed equation, giving the
value of x at the next point in time. 1f we employ the Euler formula, Equation 2.6, the set of equations to be
solved is:

9 The terms open and closed are sometimes used instead of explicit and implicit, respectively.

Section 2 Examples ¢ 23

SPARK 1.0 User's Manual

X+ax=bh; X(0) = %,
. (2.9)
=X, +hx,

It is seen that we again have awell-posed problem, two equations in the two variablesx and X. Since both
equations are algebraic, they can be easily solved by the established SPARK methodol ogy.

This example is simple, but the method is general. Regardless of problem complexity, we simply introduce
anew problem variable for every (first order) derivative, and at the same time introduce an integrator object
for the dynamic variable.

The SPARK solver then has an algebraic problem to deal with. Observe also that implicit integration
formulas require no specia consideration. Such formulas involve the x at the new time, i.e., are implicit in
X:

x=f(X,,X,,%X) (2.10)

But thisis of no concern, because the SPARK solver anticipates that an iterative solution process may be
necessary due to the possibility of other cyclesin the problem. The implicit integration formulais simply
one more equation to be converged through the normal iteration.

One other issue needs to be dealt with, and that is preserving past values of dynamic variables and their
derivatives. From Equation 2.6 (See page we see that the Euler integration formula uses values of x and

X from the previous time to calculate x at the new time. Some integration formulas use val ues of these
guantities from earlier time steps aswell. In order to provide these past values, SPARK provides four past
valuesfor al problem variables. Thisallows definition of awide range of practical integrator classes.

dt

a-a ax 5 |— dt X
E_' xdot E
C

“—
C
P |_ S |xDot
b

Figure 2.6 First order differential equation diagram.

With these ideas we can continue with our example. Figure 2.6 shows a SPARK diagram for our
differential equation. We use an instance of the safprod object class, p, to form the axX product, and an
instance of the sum object class, s, to formthe sum X +aX. Wethen link the a port of sand the X port of
the Euler object, ¢, using a problem variable called xDot. This causes the x port of c to carry the problem
variable, x, which we aso link to one of the multiplicand ports of p.

10 1f needed, SPARK can be reconfigured to allow more past val ues.

24 « Section 2 Examples

SPARK 1.0 User's Manual

/* First order differential equation
* xdot + a*x = b
* frst_ord. pr
*/
decl are saf prod p;
decl are sum S;
decl are eul er C;
i nput a p. a;
input b S.C;
[ink dt c. dt gl obal _tine_step;
[ink X p.b, c.x report;
[ink xDot s.a, c.xdot;
[ink ax s. b, p.c;

The values of a and b, must be placed in an input file, frst_ord.inp. Also, when you solve differential
equationsit is necessary to provideinitial conditions for each dynamic variable. 1n SPARK there are two
ways to accomplish this. One way isto place init=value in the link statement for the variable.

Alternatively, you can specify theinitial values by giving the initial time and associated initial values for the
dynamic variablesin the input file. Thisis preferableif you want to carry out parametric runs with different
initial conditions without changing the problem specification file. To demonstrate the latter method,
suppose a and b are 1.0 and 1.0, respectively, theinitia timeisto be 0, and x isto have an initial value of 0.
Then frst_ord.inp should be:

3 a b X

0 1.0 1.0 0.0
Since x is adynamic variable rather than specified as input, its value will be read from the input file only at
start-up. In some numerical integration methods require values of dynamic variables and their derivatives

at times earlier than the initial time. When needed, these values can be provided in the same manner, using
time values earlier than the problem initial time (i.e., negative timeif initial timeis0).

Note that the units of time are not defined in SPARK, so you are free to choose whatever time units you
wish. You simple develop your differential equations to reflect your choice. For example, if in the above

differential equations x is measured in meters and X isto be in meters/second, the coefficient a must have
units of reciprocal seconds and b must have units of meters/second.

The run control file needed to run this problem, frst_ord.run, is:

Initial Tinme (0.0 ())

Fi nal Ti me (5.0 ())

Ti mel ncr enent (0.015625 ())

Fi r st Report (0.0 ())

Report Cycl e (0.03125 ())

I nput Fi | es (frst_ord.inp ())
QutputFile (frst_ord.out ())
)

We ask for the solution over atime range of 0 to 5 seconds, with atime step of 0.015625.E1| The link for dt
includes the global _time_step keyword. This propagates the time step specified in the run control file to
wherever it may be needed in the problem and macro classes. The requested output at every other time step
iswritten to frst_ord.out. The results are plotted in generated by opening frst_ord.out with

11" Although the time step can be any wanted value we choose 1/2° =0.015625 because powers of 2 can be
represented exactly in the binary storage format used internally. Step sizes that are not powers of 2 are
difficult to synchronize with reporting intervals.

Section 2 Examples ¢ 25

SPARK 1.0 User's Manual

Microsoft Excel. Alternatively, you could use the free-use plotting program provided with WinSPARK,
wgnuplot. (See Section. 3.12, page@.ﬁ

1.5
I \ \ | |
| | | |
| | | |
e e M — —
| | |
x
7 | | |
os|- — L
* | | | |
| | | |
. | | | |
0 1 2 3 4 5

Figure 2.7 Results for frst_ord problem.

2.6.4 SPARK Library Integrator Object Classes

The SPARK library has several integrator object classes. These are shownin Table 2.2. All of these
methods are fully described in numerical analysis texts so we will just describe them briefly here.

Table 2.2 Integrator Object Classesin the SPARK Library.

M ethod Classfile

Euler integrator (explicit) euler.cm
Implicit Euler integration implicit_euler.cc
Backward-forward difference bfd.cc

4th-order backward - forward difference bd4.cc
Adams-Bashforth-Moulton abm.cc

The Euler object is based on the simplest of all methods, using only the derivative at the beginning of the
time step. The implicit Euler method is the same basic idea as the normal (explicit) Euler method except
the derivative is estimated as the average of that at the beginning and that at the end of the time step. The
backward-forward difference method is only slightly more complex, using the derivative at the end of the
time step as well as at the beginning. The 4™-order backward-forward difference method uses additional
previous values and derivatives. These bfd methods are often used for "stiff" differential equations sets
(Press, Flannery et al. 1988).

12 Although not included in the Visual SPARK release, gnuplot is available at various Internet sites and will
run on UNIX aswell as Windows platforms.

26 ¢ Section 2 Examples

SPARK 1.0 User's Manual

The Adams-Bashforth-Moulton method is a predictor/corrector method. Such methods employ two
separate integration formulas, a predictor to make an initial estimate of the new solution, and a corrector to
refine the solution iteratively. Naturally, the predictor is an explicit formula, while the corrector isimplicit.

2.6.5 Creating SPARK Integrator Object Classes

If none of the library integrator object classes are suitable, you can define your own. SPARK integrator
object classes are created much like any other object class. To see how thisis done, let’slook at the
definition of the Euler class. The port variables are the dynamic variable x, its derivative xdot, and the
timestep dt. Aninverseisgiven for asingle port variable, the dynamic variable XE

The port variables are the dynamic variable x, its derivative xdot, the time step dt. Aninverseisgiven for a
single port variable, the dynamic variable x.

[* eul er.cc */
#i f def spark_parser

port Xx;

port xdot;

port dt;

functions {
x = eul er(x, xdot, dt);

equati ons {
X = X_p + dt*xdot _p;

#endi f / *spar k_parser*/
#i ncl ude "spark. h"
doubl e eul er (ArgLi st args) {
const double x_p = args[O0][1]; /'l previous X
const double xdot _p = args[1][1]; // previous xdot
const double dt = args[2]; /1 time step
if (::lslnitialTime())
return args[0].Getlnit();
el se
return x_p + dt*xdot_p;

}

The function Euler employed in the class definition is expressed in C++ after the classitself. Itisbasicaly
an expression of the Euler integration formula, Equation 2.6. As might be surmised from the code,
arggi][1] refersto the value of thei™ argument one time step back. Since the first argument is x and the
second isxdot, argg0][1] and argg 1] [1] are the previous values of x and xdot, respectively. Initializing
const doubles, X_p, xdot_p and dt, to corresponding elements of the args array is equivalent to #define used
in earlier examples (See Section 2.4.2, page [L6).

The heart of the function is the line:
return x_p + dt*xdot_p;

which represents the Euler formula. The right hand side adds the time step multiplied by the derivative at
the beginning of the time step to the variable at the sametime. Thisisthe new value of the dynamic
variable, which isthen returned. This gets executed at every solution time except the first. When timeis

13 Theoretically, SPARK would not care whether the integration formula was used to cal culate the dynamic
variable or its derivative. Asatoken to the sensibilities of most numerical analysts, however, here we
restrict this relationship to be aformulafor the dynamic variable.

Section 2 Examples ¢ 27

SPARK 1.0 User's Manual

Initial Time, the function returns the user-specified initial value of the dynamic variable (See Section 3.1,

page@.

More complex integrators, differing primarily in the use of more previous terms, may be found in the
SPARK globalclass directory. Thereit will be seen that argg[i] two steps back iswritten x[i][2], and so
on. Userswith special needs can reconfigure SPARK to work with any number of previous values of any
class argument.

In addition to using a single previous value, the integrator in this example is also simplified in another way.
As presented, it uses the same variable name, x, to represent both the new value to be computed at the time
step and the previous value. That is, euler.cc hastheline:

x = eul er(x, xdot, dt);

where x appears on both sides. Written this way, the SPARK parser will assume that we are using the
current-time value of x in the right hand side of the integration formula, whereasin fact it is the previous-
time value of x that occurs there (See Equation 2.9, page . Since the code for the corresponding C++
function euler () actually uses only the previous value of x on the right hand side, namely argg[0] [1], Euler
integration will be properly applied at execution time. However, the disadvantage of the way we have
coded it here isthat the generated solver will include an unnecessary iteration loop. A better way to
implement integratorsiis discussed in Section 3.9 (See page .

2.7 A Larger Example: Air-Conditioned Room

Asamorerealistic simulation example let us consider a simple air-conditioned room as shown in Figure

[]
m
Tin | QwaII
! /
/
pc 1 1
AN T | 2 osa
' a
9
,Qfloor
z o |
Tfloor

Figure 2.8 Temperature controlled room.

Itissupplied by air at temperature Tj,. The flow rate of supply air is m, which is controlled by a
proportional controller acting in response to the difference between room air temperature, T, and the set
point, limited between maximum and minimum values Ty, and Typay. Heat Quq is transferred through the
external envelope in proportion to the outside-to-inside temperature difference. Also, heat Qqoor IS
transferred from the floor slab to the room air in proportion to the temperature difference between these two
bodies. Accounting for the heat capacity of the floor dab, the mathematical model for this system can be
written:

28 ¢ Section 2 Examples

SPARK 1.0 User's Manual

where:

et = UA [QTa _Tosa)

= PAje, AT, -T
fow = MCP [(Tm _Ta)
%floor = Qfiow ~ Qua

a\/lcpfloor T oo = Qoor

floor floor

(2.11)

MCPyyy)

DnCp maxE'mngT T E(mc(_?_max

UA,a isthe wall conductance,

Tosa ISthe outside air temperature,

hAs00r 1S the floor to room air conductance,
Thoor 1Sthe floor dab temperature,

T, isthe room air temperature,

Quan isthe heat flow from room air to walls,
Qioor 1Sthe heat flow from room air to floor,

_Tmm)

' rnCpmax Erhcpm'n E

Qrow isthe heat added (+) or removed (-) from the room dueto air flow,

MCp isthe supply air capacity rate,
MCproor IS the floor dab heat capacity,

MCP,,,, isthe maximum supply air capacity rate,

mMCp,,,, isthe minimum supply air capacity rate,

Tmin 1S the room temperature at which supply air capacity rate is maximum, and
Tmax 1S the room temperature at which supply air capacity rate is minimum.

Section 2 Examples ¢ 29

SPARK 1.0 User's Manual

response_hi [— max_cap
mcp response _
Uiz c response_lo [— min_cap
T1 p—Tin . P signal_lo — T_set_low
flow Ta signal , , .
T2 | signal_hi — T_set_high
q Q flow
Uiz —UA
T1
walls b net
T2 [—Tosa
c
d Q wall
Ul2 [—hA dt T
T1 xdot | ¢
floor T floor []
d Q floor T floor dot
b
c rate
Mcp— a

Figure 2.9 SPARK diagram for temperature controlled room (See macro classr oom f c. cmj.

The first two equations express the relationship between the temperature differences and heat flow to the
room air, while the third gives the heat removal rate due to the stream of conditioned air. The next two
give, respectively, the heat storage rate of the floor slab, Qy0or, @nd the rate of change of energy stored in the

dab, MCp o0 T rioor 3 OF COUrse, these quantities are equal. The last equation is the proportional control

expression, stating that the air stream cooling capacity is proportional to the difference between room air
temperature and the set point, limited between maximum and minimum values.

This system can be represented by seven SPARK objects as shown in Figure 2.9. The three heat transfer
equations are represented by the objects flow, walls, and floor, all of which are instances of the HVAC tool
kit class called cond (a conductor) having the form:

q=U12[{T1-T2) (2.12)

The dab heat storage rate relationship is represented by a diff object called net. Also, a safprod object
called rate isrequired to form a product between the dab heat capacity, MCp, and the rate of change of dab
temperature, T_floor_dot. Anintegrator object called ¢ implements the backward-forward difference
formulato get T_floor from T_floor_dot. Finaly, the proportional controller isimplemented by the class
called propcont from the HVAC Toolkit (See Appendix A on page.

30 ¢ Section 2 Examples

SPARK 1.0 User's Manual

Because several rooms are often required in a complete problem, we implement the diagram in Figure 2.9

asa SPARK macro classcalledr oom f c. cm as shown below:

/*
*

*

*/

/1 Tenperatures

Massi ve Fl oor

Macr o

Room with Controller

roomfc.cm

PORT Ta [deg_C "Room ai r tenperature";

PORT T floor [deg_C] "Room fl oor tenperature";

PORT T _floor_dot [deg C/'s] "Room floor tenperature rate of change";
PORT Tosa [deg_C] "Qutside air tenperature";

PORT Tin [deg_C "Supply air tenperature";

PORT UA [Wdeg _C] "Wall conductance";

PORT hA [Wdeg C] "Floor to air conductance";

PORT ncp [Wdeg_C] "Supply air heat capacity rate";

PORT Mcp [J/deg _C] "Floor mass heat capacity";

/1 Proportional controller

PORT T_set_high [deg (] "Set point tenmp, high";

PORT T set low [deg (] "Set point tenp, |ow';

PORT rmax_cap [Wdeg _C] "Max supply air capacity rate";

PORT min_cap [Wdeg C] "Mn supply air capacity rate";

/1 Heat transfers

PORT Q flow [w "Heat added (+) /renoved (-) by air streant;
PORT Q wal | [wW "Wal | heat transfer";

PORT Q floor [w "Heat fromair to floor";

PORT dt [s] "Time step for T _floor differential";
DECLARE cond flow, /1 Ar mass flow "conductor"

DECLARE cond walls; // Walls conductance

DECLARE cond floor; // Floor to air conductor

DECLARE diff net; /! Dff between Qin and out

DECLARE safprod rate; /1 Miltiply T_floor_dot* Mp

DECLARE propcont pc; /1 Proportional controller

DECLARE bfd C; /1 Backward-forward difference integrator
LINK . Tosa, wal | s. T2;

LINK . Tin, flow T1;

LI NK . UA wal | s. U12;

LI NK . hA, floor. Ul2;

LINK . nTp, flow Ul2, pc.response;

LINK . Mp, rate. a;

LINK .T_set_ | ow, pc. signal _I| o;

LINK .T set _high, pc.signal_hi;

LINK . max_cap, pc. response_hi;

LINK . mn_cap, pc. response_| o;

LINK .Qwall, wal I s.q, net.b;

LINK . T floor, floor. T2, c.Xx;

Section 2 Examples ¢ 31

SPARK 1.0 User's Manual

LINK .T floor_dot, rate.b,

LINK .Q floor,

LINK . Ta,
LINK .Qflow,
LINK .dt,

c. xdot ;
floor.q, net.c, rate.c;
flow T2, walls.T1, floor.T1,
flow. q, net . a;
c.dt;

This macro can be used to define a single-room problem as follows:

/*
*
*/
DECLARE room fc

| NPUT Mcp

| NPUT UA

I NPUT hA

I NPUT Tosa

I NPUT Tin

I NPUT T_set _high
I NPUT T _set | ow
I NPUT max_cap

I NPUT min_cap

LI NK dt

LI NK ncp

LINK Q fl ow

LI NK Q wal |

LINK Q fl oor

LI NK Ta

LINK T _fl oor

LI NK T_fl oor_dot

Ai r-condi ti oned Room

room fc. pr
room

room Mcp

room UA

room hA

room Tosa
roomTin

room T_set _high
room T _set | ow
room max_cap
room ni n_cap

room dt
room ncp
room Q fl ow
room Q wal |
room Q fl oor
room Ta
room T _fl oor

room T_fl oor _dot

[J/deg _C];
[Wdeg_c];
[Wdeg_C];
[deg_C];
[deg_C];
[deg_C];
[deg_C] ;
(W,

(W;

[deg_C] BREAK_LEVEL=10

[deg_C] I NI T=30
[deg O s]

pc. si gnal

I NI T=20. O;

GLOBAL_TI ME_STEP;

REPORT,;
REPORT,;
REPORT,;
REPORT,;
REPORT,;
REPORT,;
REPORT,;

Here we have declared room as an instance of the room_fc macro class. The room thermal characteristics
and control settings are defined asinputs. This alone would be sufficient to completely specify the problem
since the necessary linkages are all internal to the room_fc macro class. However, if we did not put some
link statements in the problem file, SPARK would have no problem variables and hence nothing to report.
We therefore introduce link statements to get reports on the room air temperature, Ta, floor slab
temperature, T_floor, cooling rate of the air stream, Q_flow, and the air stream capacity rate, mcp.

Alternatively, one could use the probe keyword, Section 3.7 (See Page @

Theinput data for this problemis shown in [Table 2.3|(See Page@. Note that the supply air temperature is
initially 13°C, and israised to 17°C at 20 hours (72,000 seconds) after starting. Theroom fc.inp fileto
specify thisis constructed as shown below:

32 « Section 2 Examples

SPARK 1.0 User's Manual

9 hA UA Tosa Tin Mcp T_set_low T_set_high max_cap min_cap
0 60 30 38 13 1.e6 23 24 50 0
71964 60 30 38 13 1l.e6 23 24 50 0
72000 60 30 38 17 1.e6 23 24 50 0

*

In thefirst line thefirst item, 9, is the number of problem input variables. The next nine itemsin thisline
are the names of the input variables as defined in the input statements in the problem specification file. The
data that follow give the times (in this case, seconds) and values for the inputs at discrete points throughout
the intended simulation period. The first line, with atime value of 0, givesthe initial conditions. We
specify T, to be set at 13°C from time 0 to 19.99 hours (71,964 seconds), and 17°C from 20.0 hours
(72,000 seconds) forward. Other values are constant throughout the simulation. SPARK will interpolate
linearly between the given time values to arrive at the value of all input variables at each solution point as
the simulation proceedsﬂ The last line has an asterisk, *, meaning that all values remain fixed from that
point forward.

It will be observed that the time unit in the above example is seconds. While there is a certain awkwardness
with this choice, it has the advantage of allowing the other problem variables to be expressed in true S|
units. For example, had we chosen to use hoursinstead of seconds, the time values would be the (perhaps)
more pleasing sequence 0, 19.99, 20.00, but then we would have had to express input data such as hA¢ in
J/(hour*deg_C) instead of W/deg_C.

Another observation in this example is that some input values do not vary with time, and this leads to many
repeated values in the file. While there is nothing wrong with repeating the constant values as done here,
there are aternatives that you may want to consider. Perhaps the best way to deal with this situation iswith
multiple input files, as discussed in Section 3.4 (See page @#3). Another way to deal with a constant input
variable, not necessarily recommended, is simply to omit it from the input file. This sometimes works
because problem input variables not listed in an input file will assume their init values, if available. Init
values are specified in the port statement (Section 4.9, page [74) when SPARK classes are defined. If the
class does not provide init values, or the provided values are not acceptable, you can also give an init value
on alink connected to the port. The disadvantage of doing it thisway is that the problem must be rebuilt
whenever init values are changed.

However provided, running the room_fc problem with the datain Table 2.3 produces the results plotted in
Figure 2.10 and Figure 2.11 (See Page é

All inputs are constant except Tin, which starts at 13°C and isincreased to 17°C at 20 hours (72,000 s).
Thefirst of these plots, Figure 2.10, shows the controlled quantity, mcp, and we see that it remains at its
maximum value for about six hours. During this period the room air temperature, Figure 2.11, is being
rapidly reduced. Once within the range of proportional control, the supply capacity rate modulates,
maintai ning the room air temperature close to the set point. The slab temperature gradually cools. At the
twentieth hour, the scheduled change in supply air temperature takes place, causing the supply capacity rate
to increase to the maximum. However, this maximum is insufficient so the air temperature rises above the
set point.

14 Note that there must be some time difference between successive points to allow legitimate interpolation.

15 To get these plots we opened the output file with Microsoft Excel. Alternatively, gnuplot could be used.

Section 2 Examples ¢ 33

SPARK 1.0 User's Manual

mcp (W/deg_C)

0 18000 36000 54000 72000 90000 108000

Time (s)

Figure 2.10 Supply Air Capacity Rate.

30

294+ — — — — — — - - - — — — — — —+ —

sl N I

Temperatures (deg_C)

2+ - — - — - - — — - - — — -
| |
a2+ — — — — — — — - — = — = — — — — -+ — — — —
20 ‘ | ‘ ‘ |
0 18000 36000 54000 72000 90000 108000

Time (s)

Figure 2.11 Room and Floor Sab Temperatures.

34 « Section 2 Examples

SPARK 1.0 User's Manual

Theroom fc.eqgsfile, below, reveals how SPARK solves this problem. We see that thereisasingle
strongly connected component, with two break variables, Taand T_floor. The initial values of Ta is taken
from the init values found in the macro or underlying atomic classes, since it is not mentioned in the input
file, and no init value is given in the link statement in the problem file. T_floor isinitialized at Initial Time
at the init value given in the link statement in the problem file. These plus the problem inputs allow the
indicated sequence of calculations. The component isiterated to convergence at each time step.

DT

I nput s:

dt <- dt

max_cap
m n_cap
T_set _high
T set | ow
Mep

hA

UA

Tosa

Tin

Conmponent O:

ncp = propcont(Ta, T _set low, T_set _high, mn_cap, max_cap)
Qflow = cond_q(Tin, Ta, ntp)

Qwall = cond _q(Ta, Tosa, UA)

Qfloor = diff_difference(Qflow, Qwall)

T floor_dot = safprod_quot(Q floor, Mp)

[break] T_floor = bfd(T_floor, T floor_dot, dt)

= T floor [predictor]

[break] Ta = cond_T1(Q floor, T_floor, hA)

= Ta [predictor]

Section 2 Examples ¢ 35

SPARK 1.0 User's Manual

Table 2.3 Input for the Controlled Room Example.

Variable Link Value Units
(See Equation 2.11) (Seeroom fc. pr)

hAf oor hA 60 W/deg_C
UA a1 UA 30 W/deg_C
Tosa Tosa 38 deg C
mcp, . min_cap 0.0 W/deg_C
MCP, e max_cap 50 Wi/deg_C
Tset_high T set_high 24 deg C
Tset_low T set_low 23 deg C
dt dt 360 S

MCp, . Mcp 1.0e6 Jdeg C
T;n(0-71964) Tin 13 deg C
T;n(72000-...) Tin 17 deg C
Thoor(0) T floor 30 deg C

36 ¢ Section 2 Examples

SPARK 1.0 User's Manual

Section 3 Advanced Topics

3.1 Numerical Integration Issues

Asdiscussed in Section 2.6 (See page , solution of differential equationsin SPARK requires using
integrator objects in the problem description. We saw a simple integrator classin Section 2.6.5 (See page
. Although thisis basically asimple idea, there are some details, mostly having to do with start-up at the
problem initial time, that advanced users need to be aware of.

To understand these issues, we need to consider the situation at the very beginning of the simulation period,
i.e., Initial Time, and contrast it with conditions at later time steps. At Initial Time, presumably we want the
prescribed initial values of the dynamic variablesto used. That is, if X isadynamic variable we want to
enforce:

X = X(t,) (3.1)

where X(to) is the prescribed initial value of x. However, at al other timesin the solution we need to
calculate the value of x from the integration formula used in the SPARK integrator object. That is,
assuming we are using the Euler formula, we want to enforce:

X=X, +hx, (3.2)

where the subscript p refers to the previous time step values for x and its derivative. Thus we see that the
system model is dlightly different at Initial Time. Ideally, then, we should formulate the problem twice, once
with an object representing Equation 3.1 and again with the integrator relationship, Equation 3.2, starting
the simulation with the first formulation and switching to the second after the Initial Time solution.

However, SPARK 1.0 can not change the model during simulation; it allows for a single problem
formulation. Therefore we have to use the integrator object, Equation 3.2, at Initial Time as well as
throughout the simulation period.

There are two options you can use in SPARK 1.0 to achieve proper start-up. One approach isto observe
that the difficulty arises because there are no proper “previous’ valuesfor x at Initial Time. However, we

can turn this to our advantage by simply assigning values of X, and Xp that will result in the Equation 3.2
object producing the same value for x as Equation 3.1, i.e,, X = X(to) . For example, setting both X, and
Xp to O will work if the initial value of x is supposed to be 0. In Section 3.4 (See page E{j we see how this
can be doneininput files. There are disadvantages to this approach. First, determining values for X, and

Xp that will produce the wanted initial values of x is awkward even for simple problems. The method

Section 3 Advanced Topics ¢ 37

SPARK 1.0 User's Manual

becomes intractable when more complex integration formulas are used, especially if more than one previous
value is employed.

Another approach that is often more attractive is to modify the integrator class to use a different inverse
function at Initial Time. For example, we could write
if (::lslnitialTime())
return args[0].Getlnit();
el se
return x_p + h*xDot _p

where Islnitial Time() is a boolean function (see Section 3.15, page p7) that returns True only when time
equals Initial Time, and argg] 0] .Getlnit() is afunction that returns theinitial value of argg[0]. Thisis
actually quite a good solution to the start-up problem. It is easy to implement and will adapt to even
complex integrators. The drawbacks are small losses in computational efficiency and generality. The
principal efficiency lossis dueto the extraif-check which must be executed at every time step in the
simulation; it is doubtful that thisincrease in solution time will be significant in most problems. Thelossin

generality is because certain kinds of initial conditions, e.g.,)'((to) = C, can not be enforced. SPARK 2.0

will deal with this start-up situation more rigorously. Two different problem graphs will be constructed, one
using a start-up formula and the other a proper integration formula. Thiswill allow determination of
completely different solution sequences at start up if needed to enforce special initial conditions. Moreover,
this approach will permit use of different integration formulas whenever necessary later in the simulation,
e.g., after achange in integration step size.

3.2 lterative Solution and Break Variables

Aswe have noted in earlier examples, systems of equations often have to be solved iteratively. In SPARK,
this can be true even if the equations are all linear, because no specific test isdone for linearity. Normally,
the user need not be concerned with the iterative process, so we will not go into detail here. However, a
general awareness of the methods used is helpful if solution difficulties are encountered.

First, in the problem setup phase, SPARK determinesiif iteration is required by detecting cycles in the
problem graph. If cycles are detected, a graph algorithm is used to find a small set of variables (nodesin
the graph) that “cut” the cycles. The associated problem variables, called “break variables,” are placed in a
vector to act as the unknown vector X in a multi-dimensional Newton-Raphson solution scheme. The
functions that are forced to zero in the Newton-Raphson process are of the form

g(x) = f(x) —x (3.3)

where Xisthe vector of break variables, and f (X) represents the directed acyclic graph formed when the
original problem graph is cut at the cut-set vertices. In other words, the current solution estimate, x, is
applied to the graph, producing f (X), from which the original estimate is subtracted. At the solution,

f (X) —x = 0. The Jacobian matrix for the Newton-Raphson processisthen J = g—g . In each Newton-
Raphson iteration the next estimate is calculated by solving the linear set §
JAX = g(x) (3.4
for AX , then calculating
X< = x* — Ax (3.5)

38 ¢ Section 3 Advanced Topics

SPARK 1.0 User's Manual

The solution of the linear set, Equation 3.4, is carried out with Gaussian elimination, LU decomposition, or
similar method. Note that the size of J is the size of the cut set, so this solution can be much more efficient
than if we had not attempted to minimize the cut set.

Normally, this process converges to the solution quite rapidly (quadratically). However, it iswell known
that the Newton-Raphson process, like all methods for solving general sets of nonlinear equations, can fail
to converge under certain circumstances. Failure occurs when the residual functions have particular kinds
of nonlinearities and the starting values are not sufficiently close to the actual solution. Thus starting values
are important.

In SPARK, we refer to the process of selecting a starting value for the iteration process as “prediction”. By
default, the prediction for solution at a particular time step is the final solution value for the same variable at
the previous time step. This can be changed by use of the pred_from_link=linkFrom keyword in the
corresponding link statement. In this case, the value of the linkFrom link is used as the predictor. Note that
at the Initial Time solution there is no proper “previous time step value.” In this case, if thereisno
pred_from link=linkFrom, SPARK will use the default value for the break variable as theinitial predictor.
Since default values determined in this way are not appropriate for every variable, they may not be very
close to the solution value. Thereforeit isbest to provideinitial predictors viainput files. Thisissueis
discussed further in Sections 3.3.1 (See page @ and 3.3.2 (See page@.

3.3 How SPARK Assigns Values to Variables

In abroad sense, one would think that variable values in a problem should either be specified by the user, or
be calculated in the process of solving the problem. While thisisindeed true, there are issues having to do
with SPARK value assignments that sometimes need careful attention. Thisis best discussed in terms of
four different methods of value assignment that can take place in SPARK: initialization, prediction,
updating, and solution.

3.3.1 Initialization

Initialization refers to providing values that are needed at the beginning of the simulation. Using these
initial values, SPARK then computes values for all link variables at the initial time of the simulation. While
all SPARK variables can beinitialized, not all need to beinitialized.

What Must be Initialized

There are two cases where variables must be given initial values, regardless of the numerical methodsto be
used:

Dynamic variables. These are the link variables that appear in differential equations, i.e., those attached to
an x port of integrators. Thisinitialization requirement arises directly from the underlying mathematical
theory, namely that you need an initial condition, in addition to the differential equation, in order to have a
well posed problem. This requirement is independent of the choice of integration method or other
numerical considerations.

FromLinks of PreviousValue Variables. PreviousValue Variables (See Section 3.9, pagepl) areina
special category in SPARK. Most SPARK non-input link variables get values in the process of solving the
problem equations at the time in question. Previous Value Variables, on the other hand, get their values
from calculations done at the previous time step. Asdescribed in Section 4.13 (See page , the syntax
update_from link = fromLink defines the link from which the variable in question getsits value. For thisto
work properly at Initial Time, obviously the variable referred to as fromLink must be initialized at the time
one time step before the probleminitial time. This can be done either in aninput file, or using theinit in the

Section 3 Advanced Topics ¢ 39

SPARK 1.0 User's Manual

link statement defining fromLink. Note, however, that Previous Value Variables that arise in the definition
of integrators need not be initialized because they are never used at Initial Time.

What Might Need Initialization

Additionally, certain numerical integration methods may need to beinitialized not only at Initial Time, but
also at one or more earlier time steps. While this can be donein SPARK, as a practical matter it is difficult
or impossible to know such values. For thisreason, SPARK 2 will avoid use of such methods at the
beginning of the simulation and until necessary histories of past values have been solved for with single step
methods. For Spark 1.0, ideally you should attempt to provide past values as needed by multistep methods,
if used. That said, some analysts may be willing to accept some degree of inaccuracy in early time steps, in
which case this advice can be disregarded.

BDF-like multistep schemes require past values for the dynamic variables, as many as the order of the
method. For example, the bd4.cc class requires values at one, two, three, and four time steps before the
initial time of the simulation. Similarly, Adams-like multistep schemes, e.g., bfd.cc and abm.cc, require
past values for the derivatives of the dynamic variables, again as many as the order of the method.

Finally, it should be noted that variables that SPARK selects as break variables may need initialization. The
reason for thisisthat unless the link statement for break variable has the keyword pred from link =
fromLink (see below) the iteration process at each new time begins at the previous value of the break
variable. Without proper initialization, the previous value at Initial Time would likely become the built-in
SPARK default value, 0.01. To override use of the default value, you must initialize the break variable at
Initial Time.

How to Specify Initialization

The user can specify initial valuesin two ways. Firgt, init = value can be placed in the link statement for the
variable, or in any equivalent link to a port statement in macro objects (See Section 3.3.5, page. An
alternative way to initialize is by means of input files. During the initialization phase of the simulation, all
variables can haveinitial and past values assigned through reading from input files. Thisis done by
providing the required variables and derivatives with values at Initial Time, and earlier time stepsif needed,
using negative times if necessary.

Initialization of Previous Value Variables is a special situation. Since avariable of thiskind getsits value
from the previous value of another variable, the proper way to provide its Initial Time value is to specify the
value of the corresponding fromLink at one time step before Initial Time, indicated by ainitial time minus
the time step, using negative time stamp in an input file. Note that an attempt to use theinit keyword in a
link statement in which the update_from_link keyword is used results in awarning. Moreover, values given
for Previous Value Variables per sein input files will be ignored.

Thus we see that SPARK initial values can come from the default values, init = value, or input files. Either
of the latter two will override the first. If avariable has both init = value and occursin an input file, the file
input overrides the init value.

3.3.2 Prediction

In SPARK prediction refers to providing values for break variables at the beginning of each time step, i.e.
prior to solving the simultaneous algebraic problem by iteration.

Where Prediction is Needed
Asarule, only break variables need predicted values.

40 » Section 3 Advanced Topics

SPARK 1.0 User's Manual

How Prediction is Specified

By default, predicted values for break variables come from the final value for the same variable found at the
previous time step. In many cases thiswill work well, so no specia steps have to be taken by the user. If
your problem encounters solution difficulties, you may want to provide better prediction using either the
pred_from_link feature for links, or the pred feature in the class definition.

If pred_from link = fromLink appearsin the link statement for a break variable, the starting value for the
iterative solution at the new time will be the value of fromLink. This mechanism is used when you know
that the value of fromLink provides a more reliable estimate for the break variable than its previous value.
Note that since the fromLink can be any link, this mechanism allows you to devise predictor using variables
from anywhere in your problem. Thereforeit isavery general and powerful mechanism.

Another mechanism for prediction is provided by the syntax:
PRED = predictor_fun(portl, port2, port3, ...)

in the Functions section of a SPARK class definition. This methods provides a predictor at the class level,
as opposed to the pred_from_link keyword which provides prediction at the link level. Classlevel
prediction is primarily used to implement predictor-corrector integration schemes (e.g., abm.cc), where the
predictor scheme is specified following the pred keyword. Another possible usage of class level prediction
isto provide a predictor function for a nonlinear atomic class using a linearized form of the nonlinear
equation. This approach has been successfully applied with the airflow-pressure power law relation in the
zonal model context. Unlikelink level predictors, class level predictors can involve only the variables
connected to the ports of the classin question.

If avariable has both link and class level prediction (an unlikely situation), the class level prediction will
override the link level prediction.

3.3.3 Updating

The concept of Previous Value Variables (See Section 3.9, page , requires the concept of updating as a
means of assignment of values to such variables.

What Needs to Be Updated
Updating refers only to providing values for Previous Value Variables at the beginning of each time steps.

How Updating is Specified
To implement this concept, every Previous Value Variable hasin its defining link statement:
update fromlink = fronLink

Previous Value Variables are viewed as receiving values by updating from the specified links. At the
beginning of every time step, before solving the problem equations, the saved previous value of fromLink is
assigned to the variable named in the link statement.

3.3.4 Solution

Solution is the prevalent method whereby values are assigned to variablesin a SPARK problem.

Section 3 Advanced Topics ¢ 41

SPARK 1.0 User's Manual

What Needs to Be Solved For

Normally, values for SPARK variables are determined by the solution of the system equations at each time
point in the solution interval. The exceptions to this are, Input variables, Previous Vaue Variables, and
Dynamic variables at Initial Time

How Solution Is Specified

As noted earlier, keywords in the associated link statements often determine the role of the variable. Inputs
variables are identified by the keyword input either replacing the link keyword, or occurring elsewhere in
the link statement. Previous Value Variables are defined by the keyword update_from link in the link
statement. Dynamic variables, on the other hand, have no special identifying keyword. Variables become
dynamic merely by being connected to an x port of an integrator. The absence of these special keywordsin
alink statement indicates that the associated variable is to be solved for.

Break variables are normal SPARK variables, other than inputs or Previous Value Variables, that happen to
be selected by SPARK for iteration. Although they are assigned predicted values at the beginning of
iteration at each time step, their final values after convergence at each time step are "solution” values, i.e.,
they satisfy the system equations. Note that the break variables are determined automatically by SPARK.

3.3.5 Propagation

Asdiscussed previously, SPARK problem variables can have a default value assigned through the use of
keywords in the port statement. This default value will replace the built-in default value (0.01) for the port.
However, when SPARK atomic classes are used to build macro classes, and when both become parts of
SPARK problem files, a question arises about precedence among these values as set at different levels. For
example, suppose we define atomic class acl which hasaport called T with a default value of 20. Now
suppose we define a macro class mcl which uses acl, and this class also hasaport called T with a default
value of 10 which islinked to the T port of acl. The questionis, which default value will SPARK use for
variables linked to the mc1 T port when it is used in a problem or another macro class? The same question
can be posed for the init, min, and max values assigned through the port or link statements.

These questions are answered by propagation rules built into the SPARK parser. Thefirst ruleisthat the
higher level takes precedence. This meansthat adefault, init, min, and max values given at any level
override those given in lower level ports to which there is a connecting path. That is, values will
automatically propagate downward as needed. Thusif mcl were to be used in a problem file (or another
macro class), any variable linked to its T port would have a default value of 10.

Let us consider another facet of this problem. Suppose a default value is not given for the T port of the
mc1l discussed above. Will avariable linked to the mcl T port have a default value (other than the built-in
value of 0.01) when it is used in a problem or another macro class? The rule given above addresses
downward propagation, but this question is one of upward flow of information, from aport in alow level
classto aport linked to it in the higher level class or problem. To deal with this situation, SPARK applies a
second propagation rule, which isthat default, init, min, and max values are propagated upward through
connected ports whenever the higher level ports have no corresponding values.

Together, these propagation rules produce behavior that most users will find natural. However, ambiguity
can arise when amacro class port is linked to two or more ports of constituent classes. For example,
suppose mcl also uses another atomic class, ac2, which also has aport called T, but with a default value of
15. Will the value propagated upward (in the absence of default specification of the T port in mcl) be 20
or 15?7 Thereisno way for SPARK to resolve such an ambiguity. Consequently, the propagated value will
be determined by the order in which the parser encounters the linkagesin mc1. To avoid such ambiguity,
the user should assign values at the higher levels when building complex macro classes.

42 « Section 3 Advanced Topics

SPARK 1.0 User's Manual

3.4 Input Values from Files

Most SPARK problems require data beyond that which is specified in the problem specification file. In
particular, as we saw in the examples of Section 2, variables designated as input in the problem
specification file need run time values. Moreover, certain other kinds of data are needed to specify exactly
how the problem isto be solved numerically, e.g., initial values for dynamic variables and prediction values
for iteration variables. All such data can be provided in SPARK input files. Although usually bearing the
.inp extension, files of any extension can be used as SPARK input files..

Although in simple examples we have dealt with in this manual so far we have used asingle input file for a
SPARK problem, in practice it is often better to segregate the different kinds of input into separate files.
One useful categorization of different types of input is:

Constant data: These are usually physical characteristics of the system that do not change with time.
For example, surface areas, equipment capacities, and any other physical problem data that are
assumed to be constant, such as heat transfer coefficients.

Timevarying data: Thisincludes any problem input data that varies with time during the simulation
interval. The most common example in HVAC problems is weather data, such as ambient
temperature and humidity. However, system control information, such as thermostatic set points,
that are scheduled to change at particular times are also time varying inputs.

Initial Conditions: If the problem includes differential equations, the initial values of all dynamic
variables must be provided. Although these can be specified in the problem specification file with
the init keyword, it is usually better practice to specify them in an input file so they can be changed
in subseguent runs without rebuilding the problem.

Numerical support data: Numerical techniques used in SPARK sometimes need, or at least benefit
from, additional user supplied data. This category often includes initial predicted values for
variablesthat are solved for by iteration, i.e., break variables. Also, if the chosen numerical
integration methods for differential equations in the problem require previous values of the
dynamic variables and/or their derivatives, they belong in this category.

In awell organized problem, each of these categories should have a separate input file. Moreover, itis
sometimes wise to have multiple files within these categories. For example, you could have a separate
constant data file for each subsystem in a complex model. Another situation calling for multiple input files
within a category is when time varying data has different temporal characteristics. For example, if we
wanted to have outside temperature T,s Varying hourly in the room_fc example it would be far easier to
place thisin a different file than the one with T;, which changes only once.

We can demonstrate these ideas by revisiting the room_fc example from Section 2.7 (See page . For
example, we could create four separate input files using the above categories. The constant datafile,
appropriately called room_fcDesignParameters.inp, would contain:

8 hA UA Tosa Mcp T_set_low T_set_high max_cap min_cap
0 60 30 38 l.e6 23 24 50 0

while the time varying data file, that we might call room_fcTimeVaryingParameters.inp, would contain:

1 Tin
0 13
71964 13
72000 17

*

Since the controlled room problem includes a differential equation, it is necessary to specify the initial value
of the dynamic variable, T_floor. Rather than relying upon the init keyword to set theinitial value for this

Section 3 Advanced Topics ¢ 43

SPARK 1.0 User's Manual

dynamic variable we can specify it in an initial conditionsinput file. Thisfile could be called
room_fclnitial Conditions.inp and would contain:

1 T_floor
0 30

One advantage of this approach isthat it is not necessary to rebuild the problem when initial values change.

Finally, we should create an input file for whatever information is needed to support the numerical solution
process, provided such information is available. Oneissuein thisregard isinitia predictionsfor break
variables, asexplained in Section 3.3.2 (See page@. As explained there, at the very beginning of the
solution an initial predictor is needed because otherwise there would be no "previous time value" to use. If
areasonable estimate for a break variable is not readily available, SPARK can sometimes find a solution
beginning with the default initial value, 0.01. However, if you can estimate more appropriate initial
predictions the iteration process will have a better chance of quickly finding the correct solution at the start
of the problem. Note that while better accuracy of these initial predictors will improve the chances for
solution, usually great accuracy is hot necessary.

In the case of the controlled room example the equation file reveals that SPARK chooses Ta and T_floor as
break variables. Thereisno need to worry about T_floor in this regard, because the initial value already
provided will be used directly. For the Ta variable, we can easily provide an estimate more accurate than
the default value. For example, avalue half way between theinitial T_floor value and the supply air
temperature value should be a reasonable for Ta. Thus anumerical support input file called
room_fcNumerical Support.inp could therefore be created as:

1 Ta
0 215

A problem run control file (See Section 3.14, page pS] must list the names and locations of all input files.
For this example, we have room fc.run as:

Initial Tinme (0.0 ())

Fi nal Ti me (108000.0 ())

Ti mel ncr enent (180 ())

Fi r st Report (0.0 ())

Report Cycl e (360.0 ())

I nput Fi |l es (room fcDesignParameters.inp ()
room f cTi meVaryi ngParaneters.inp ()
room fclnitial Conditions.inp ()
room f cNumeri cal Support.inp ()

)
QutputFile (roomfc.out ())
)

3.5 Macro Links

When systems with fluid flow are modeled, the component models are often connected with a common set
of links. For example, HVAC system air components such as fans, heating and cooling coils, and mixing
boxes are connected by links representing air enthalpy (or temperature), humidity, and mass flow rate.

In SPARK, aset of ordinary links such as these can be grouped together and used as a macro link,
connecting macro ports of classes, thereby simplifying specification of such models.@

16 Technically, amacro link does not exist in its own right as a SPARK construct. It isjust aterm for
referring to alink connected to a macro port.

44 « Section 3 Advanced Topics

SPARK 1.0 User's Manual

As an example of macro links and ports, consider a moist air mixer in which we define the interface to have
three macro ports, representing two inlet flow streams and one outlet flow stream:

port AirEnt1l “Inlet air stream 1" [airflow
, -m "air mass flow' [kg_dryAir/s]
Y “hum ratio" [kg_wat er/ kg_dryAir]
, -h "ent hal py" NCERR [J/ kg_dryAir]

port AirEnt2 “Inlet air stream 2" [airflow
, -m "air mass flow' [kg_dryAir/s]
Y “hum ratio" [kg_wat er/ kg_dryAir]
, -h "ent hal py" NCERR [J/ kg_dryAir]

port AirLvg "Leaving air streant [airflow
A 1] "air mass flow' [kg_dryAir/s]
Y “hum ratio" [kg_wat er/ kg_dryAir]
, -h "ent hal py" NCERR [J/ kg_dryAir]

In this example, each macro port has three properties or subports, namely mass flow rate, humidity ratio,
and enthalpy. Although the individual subports of one of these ports have separate names, description
strings, and physical units, the macro port itself also has a name, description, and units string.@

When an object of this classisinstantiated you can connect similar macro ports (i.e., those with like units
and similar internal structure) in the same manner as you would connect ordinary ports. Thusif the class
with the above interface were called mixer M P we could write (in some macro class or problem we were
creating):

decl are m xer MP ml, n2;

link AirStreanl ml. AirLvg, nm2.AirEnt1;

Thiswould connect the humidity ratio, mass flow rate, and enthalpy of the air stream leaving m1 with the
first inlet of m2.

Developing classes that use macro ports requires great care, sinceif it is not done correctly the objects will
not connect properly. The principal requirement isthat if the macro ports of two objects are to connect
properly, the ports must be similarly defined in both objects. By “similarly defined,” we mean that the unit
strings for both macro ports must be identical, and that there must be at least one common port name
between the two ports. Thisis no problem in the above example, since m1 and m2 are of the same class,
and the leaving air port is defined exactly the same as the two entering ports.

However, errors can easily occur if the two ports being connected belong to objects of differing class,
perhaps devel oped by different people. For example, suppose a fan class were to be defined with the
entering air port defined as:

port AirEnt "Inlet air streant [airflow
, .massFlow "air mass fl ow' [kg_dryAir/s]
, - W "hum ratio" [kg_wat er/ kg_dryAir]
, -h "ent hal py" NCERR [J/ kg_dryAir]

Since the units string , airflow, isthe same, SPARK would allow the following connection to be attempted:

decl are m xer MP mi;
decl are nfan f1;
link InFlow nml.AirLvg, f1.ArEnt;

17" Although, rather than physical units, the macro port “units’ are merely a unique name, selected by the
user.

Section 3 Advanced Topics ¢ 45

SPARK 1.0 User's Manual

However, since the flow subport is called m in the mixer M P and massFlow in the mfan, only thew and h
subports would be successfully connected. Thisis because when the SPARK parser expands the macro
link/port, it attempts to match subports of like names. If there are no subportsin the second object that
match any of the subports of the first, the parser rejects the link statement as erroneous. But if at least one
of the subports at one end matches a subport at the other end, SPARK assumes you know what you are
doing and acceptsthe link. Thisis useful since you may indeed want to connect some but not all subports;
for example, you may wish to connect one component with a dry-air macro port (i.e., no humidity ratio)
with another component that was designed for moist air calculations,

There are a so situations where you need to qualify individual subport in a macro link with one or more
keywords. For example, suppose the first inlet port of m1 in our first example comes from problem input
data, and the mass flow rate isto be reported. The syntax to accomplish thisis shown below:

decl are m xer MP ml, n2;

[ink AirStreandl ml. AirLvg, nR.AirEnt1;

i nput massFl owl ml. AirEnt1. mreport;

i nput hFl owl ml. Ai r Ent 1. h;

i nput wFl owl ml. AirEnt 1. w;

Asis seen in this example, this syntax is much the same as for ordinary links or inputs; the only difference is
that we qualify the port name, e.g., m, with the subport name as a prefix. The dot (.) is used as a separator.

While the above syntax is valid and easy to interpret, it is not concise. A more concise syntax that
expresses the same connections is:

declare m xerMP ml, n2;

link AirStreanl ml. AirEntl (.h) input (.w) input (.m {input report};
link AirStrean? mil. AirLvg, n2.AirEnt1;

Thefirst link statement defines a macro link called Air Steam1 that is connected to the Air Ent1 macro port
of the m1 object. We see that each subport is referenced with the notation (.portName), and that following
such reference there is a keyword such as input that applies only to that subport. 1f more than one keyword
is needed, they are enclosed in braces, e.g., {input report}. Thus we see that all three subports are to come
from input, and the m subport is to be reported.

The need to make direct subport connections also arises in defining classes that have subports. For
example, the mixer M P class might be (partially) implemented using the concise syntax as:

decl are enthal py el, e2, e3;
decl are sum s;

decl are bal ance hb, wb;
link AirEntl .airEnt1,

(. TDb) el. TDb
(.w{el.w, wb.qgl}
(.h){el.h, hb.qgl}
(.m{s.a, hb.nl, wb.m};
link AirEnt2 .airent2,

(. TDb) e2. TDb
(.w{e2.w, wb.qg2}
(.h){e2.h, hb.qg2}
(.m{s.b, hb.n2, wh.nR};

18 Thisis somewhat like plugging a 2-wire appliance cord into a 3-wire wall outlet.

46 « Section 3 Advanced Topics

SPARK 1.0 User's Manual

link AirlLvg .airlLvg,
(. TDb) e3.TDo
(.w{e3.w, wb.q}
(.h){e3.h, hb.q}
(.mM{s.c, hb.m wb.nt};

Here we see that each subport of the three macro portsis linked to the appropriate ports of the constituent
enthal py and balance objects. The normal syntax could also be used here, but this would require four times

as many statements,

3.6 Internal SPARK Names for Variables (Full
Names of Links or Ports)

In our early examples the name of a problem variable was synonymous with the user-defined name assigned
inalink or input statement. For example, in:

declare roomr;
link Ta r. Ta;

Taisthelink name and it obviously represents the variable placed at the Ta port of ther object, probably a
room air temperature. However, due to the hierarchical nature of SPARK programming, there are places
where internal names used by SPARK might not be quite so obvious. This matter can be important when
you are reading certain SPARK files, such asthe .egsfile for complex problems, and when using the probe
keyword (See Section 3.7, page [49).

To understand SPARK naming conventions you must understand that at solution time the solver works
entirely at the equation level. This means that when SPARK parses a problem file, all macro objects and
macro links must be expanded into atomic objects and links. When this happens, link names in higher level
objects are propagated downward, as might be expected, overriding names that may have been assigned in
the class definition of lower level object. For example, suppose that the room class used in the above link
statement is (partially) defined as:

declare cond flow, /* Ar mass flow "conductor"” */
declare cond wal | s;/* Walls conduct ance */
declare cond floor;/* Floor to air conductor */
declare diff net; /* Diff between Qin and out */
decl are propcont pc; /* Proportional controller */
[ink Tair .Ta, flow T2, walls.T1, floor.T1, pc.signal [deg_C];

From this we can see that the problem level link named Ta is known as Tair inside the room class, and is
connected to the Ta port of that class, and to ports of various names of the constituent classes of room. By
the noted propagation rule, all of these lower level names are overridden by the problem level name Ta.

Asaresult of this downward propagation of link names, all problem level variables are readily identifiable
when reported, for example, in the .egsfile.

However, often there are links in lower level objects that do not appear at the problem level. This occurs
whenever a macro class developer elects not to connect an internal link to aport, or if the user of the class
elects not to connect some unessential port (i.e., one with the NOERR keyword. See Section 4.9, page .
Asan example, the mixer classinthe HVAC Toolkit class library is defined as:

19 The mixer M P class is one of the many classes in the HVAC Tool Kit implemented in the macro port
form.

Section 3 Advanced Topics ¢ 47

SPARK 1.0 User's Manual

port m "Conbined flowrate, e.g., total nass flow' ;
port ¢ "Conbi ned transported quantity, e.g., enthal py" ;
port ni "First inlet flowrate" ;

port ql "First inlet transported quantity" ;

port nR "Second inlet flowrate" ;

port g2 "Second inlet transported quantity" ;

decl are saf prod spl, sp2, sp;

decl are sum s;

[ink .m sp.a ;

[ink .qg, sp.b;

[ink c sp.c, Ss.cC ;

[ink .m, spl.a ;

[ink .ql, spl.b ;

[ink a spl.c, s.a ;

[ink .2, sp2.a ;

[ink . g2, sp2.b ;

[ink b sp2.c, s.b ;

Note that the links named a, b, and ¢ are not connected to ports. Consequently, they cannot be accessed
from higher level objects, and therefore cannot be problem level variables.@ Nonetheless, these links
represent variables whose values must be calculated by the SPARK solver at run time, and they will be
assigned names by the SPARK parser. Under normal circumstances, you would not need to know these
names, after all, they are merely intermediate variables needed to solve the mixing equations. However, if
your problem does not solve properly you may have need to look in the .egsfile (Section 2.2.3, pageEj, in
which case you may want to know the names SPARK assignsto such links. Also, if you need to use the
probe keyword, you will need to know how to refer to lower level links and ports (See Section 3.7, page

Link names that do not resolve to problem-level links are generated by concatenation of object, link, and
port names beginning at the highest level at which the link appears and going down to the port of an atomic
class. The special prefix symbols single quote (), tilde (~), and dot (.) are used in the concatenation in
order to ensure unambiguous names. As an example, if we declarearoom in aproblemfile as:

declare roomr;

and the room declares amixer:
declare m xer m x1;

then the c link in the mixer would be referred to as:
r’'mxl~c
Thismight be read “the c link in the mix1 object in ther object.” The single quote (') prefixes an object in

ahierarchy of objects, whilethetilde (~) prefixeslinks. In amore complex situation, objects may be
nested deeper, for example,

obj 1’ obj 2’ obj 3~I i nknamne
Also, as mentioned in Section 2.5.2 (See page @ links within a macro class are often unnamed. In this

case, SPARK will use a generated string of the form “NONAMER” where nisan integer. Thus you might
see:

obj 1’ obj 2’ obj 3~NONAME7
in SPARK .egsfiles.
An additional complication isintroduced when macro links are used (Section 3.5, page@. Since macro

links may have several subports, the linkname must be qualified with the name of the particular port of
interest. For example,

20 Unless the probe statement is used (Section 3.7, page 49).

48 « Section 3 Advanced Topics

SPARK 1.0 User's Manual

obj 1’ obj 2’ obj 3~I i nknane. p1

refersto the p1 port of link linkname in obj 3 that is part of obj2 that is part of obj1. And if the p1 port
itself wasin fact amacro port, we could go on with:

obj 1’ obj 2’ obj 3~I i nknane. pl. a

to refer to the a subport of the p1 port of the link linkname in obj 3 which is part of obj2 whichiis part of

obj1. Fortunately, sinceyou are primarily concerned with higher level problem variables, you don’t often
have to cope with this complexity.

3.7 Using the Probe Statement

As noted in the preceding section, there are often SPARK links that are not visible at the next higher level
due to not having been elevated to a port of the classin which they are defined. Yet, sometimesitis
convenient or necessary to be able to gain access to such links from higher levels. For example, you may
want to report the ¢ link internal to the mixer object in Section 3.6 (See page. While you could solve
this problem by editing the mixer class, i.e., adding a new port for ¢, thisis not agood solution. First,
making changes to widely used classesis hazardous; errors might be introduced, or you might cause
unwanted behavior in other applications that useit. Another reason to avoid this approach is that if the
needed accessis several levels up in ahierarchy, you will have to edit every classin the hierarchy to elevate
the needed link to where it is needed. The probe statement is provided to give an easier and better solution
to such problems. It allows you to reach down into lower level objects, either to report values or set default,
init, min, or max values. Y ou can also set match_level and break _level for the link.

The probe statement has the same general format as the link statement. However, you must use the full,
SPARK generated, name for the low level link, as explained in Section 3.6 (See page . Asan example,
we will use probe to set the init value and request reporting for the ¢ port of the mixer in theroom
mentioned in Section 3.6 (See page [7):

probe mixer_ ¢ r’'mxl~c init=0.5 report;

This statement would be put in the problem file in which the roomr isdeclared. Here mixer_cisauser-
defined name for the probe. The expanded name of the wanted lower level link isr’mix1~c. Withtheinit
keyword we set the initial value, to be used if thislink was selected as a break variable for iterative solution,
to 0.5. Finally, the report keyword causes the value of ¢ in the mixer to be reported along with other
requested report variables during solution. The probe name mixer_c will be used as the label in the
requested reporting.

Asan aside, it isinteresting to note that the above statement could also be written as:
probe mixer ¢ r’'mxl sp.c init=0.5 report;

or as.
probe mixer_c r’'mxl's.c init=0.5 report;
In these alternative forms, we set the probe to point at the ¢ ports of either the sp or s objectsto which thec

link is connected. Since the values on the ports will be the same as the value on the link at run time, the
same values will be reported.

3.8 Symbolic Processing

Asseenin earlier examples, SPARK atomic classes are constructed from equations. While these classes
can be constructed manually, the process can be time consuming and tedious. First, the equation must be

Section 3 Advanced Topics ¢ 49

SPARK 1.0 User's Manual

solved for al (or most) of its variables, one at atime. For example, if the equation isthe ideal gas
relationship pv = NRT , we need to do the algebrato get the following formulas:

p=nRT/v
V=nRT/p
n=pv/RT
R=pv/nT
T=pv/nR

These are called inverses of the original equation. Then, for each inverse we must construct a C++
function that evaluates the right hand side and returns the resulting value. Finally, all of these functions
must be incorporated in a SPARK atomic class representing the ideal gas law, following the syntax shown
in the earlier examples (Section 2.4.1, page.

Fortunately, these tasks can be automated using symbolic processing (also called computer algebra) tools.
SPARK provides a program called sparksym that fills this need. With it you can generate all symbolic
inverses of an algebraic equation, generate C++ functions implementing these inverses, or create the
complete SPARK atomic class.

Actually, sparksymis an interface to third-party symbolic programs. Currently, it can use either
Mathomatic, Maple, Mathematica or MACSY MA, as selected by acommand line option. A subset of the
Mathomatic program is integrated in sparksym, so that option is aways available@ If Maple, Mathematica
or MACSY MA are detected on your machine when SPARK isinstalled, or if you install them later and take
steps to link them to SPARK, you can select it as an alternative symbolic engine for sparksym. Maple,
Mathematica and MACSY MA are more powerful than Mathomatic, allowing more complex equations to be
handled.

3.8.1 Simple Symbolic Processing

Command-line usage of sparksym is with the command:
sparksym —engi ne -option [nanme] "equation" [target] [outFile]

where:
engine = O (Mathomatic), P (Maple), E (Mathematica), S(MACSYMA)
option =i (singleinverse), a(al inverses), f (function), c (class)
name = Name for function of class (used only with option f or c)
equation = An equation of the form <expression>=<expression>(enclose in double quotes if spaces
occur)
target = The variable to be solved for (used only for optionsi and f)
outFile = Optional file for the result

21 The sparksym executable provided with SPARK does not give you the full capability of Mathomatic.

Y ou can download the DOS shareware program from http://www.lightlink.com/george2/. Among other
features, it is capable of symbolic elimination of variables and equations in sets of equations; sometimes this
feature can be used to help devel op efficient SPARK classes.

50 ¢ Section 3 Advanced Topics

SPARK 1.0 User's Manual

3.8.2 Generating an Inverse

For example, to generate the inverse equation for T using the ideal gas law, with output to the screen:

sparksym -O -i "p*v = n*R*T" T <enter>
I nver se:
T = p*v/n/R

Or to create the SPARK idealGasLaw atomic class, with results written to ideal GasL aw.cc:
sparksym —O -c i deal GasLaw "p*v=n*R*T" ideal GasLaw. cc <enter>

The class generated is directly usable, but perhaps not as complete as you may wish. For example, the ports
are al assigned a description which is the same as the port name, units are [-] (i.e., unspecified), and the
init, min, and max values are set at 1, -100000, and 100000 respectively. You can edit the output file to
give more appropriate values for these items if you wish.

3.8.3 Caveats

You are advised to carefully check all symbolic results, since computer algebra software often gives
unexpected results, sometimes simply wrong. Sparksym using the Mathomatic option is not as robust as a
full-featured symbolic package, although it may meet many of your needs. With it, you are limited to
expressions using the operators +, -, *, /, and ~ (exponentiation). It will fail quickly if it cannot easily
invert the equation for the desired variable. Note that the atomic class generated with the -c option will
have functions for each variable in the equation, whether or not an explicit inverse was found for it.
Variables for which it could not find an explicit inverse use an implicit inverse asin Section 3.11.2 (See
page@. Y ou may wish to edit the implicit functions, as discussed in the same Section, to improve
numerical stability. With the Maple option, practically any equation can be handled, including various
mathematical functions. Additionally, it will sometimes find multiple inverses. Inthiscaseal inversesare
written in the generated functions, with al but one commented out. Thereforeit isagood ideato examine
the generated class to see that the wanted inverse is being used.

All of the above functionality is also available in the WinSPARK and Visual SPARK interfaces. Seethe
appropriate Installation and Usage Guide for particulars.

3.9 Previous Value Variables, or Updating
Variables from Links

Asdiscussed in Section 3.3.4 (See page , most SPARK variables are determined by solution of the
problem equations at the current simulation time. This means that each variable gets assigned avalue that is
calculated from an inverse of one of the problem equations. There are situations, however, when a variable
in asimulation must represent the previous value of some other variable. Such a variable needs no equation
sinceits value is determined merely by assignment of the value of some variable at the previous point in
time. A variable of this nature can be called a previous value variable.

Since SPARK variables are carried on links, previous value variables are viewed as receiving values by
updating from specified links. Consequently, SPARK provides update_from_link as an optional keyword
in alink statement, taking the form:

Iink i nkName <connections> update fromlink = FronLi nkNaneg;

At the beginning of the time step, before solving the problem equations, the saved previous value of
FromLinkNameis assigned to linkName. As discussed in Section 3.3.1 (See page@ initializing a

Section 3 Advanced Topics ¢ 51

SPARK 1.0 User's Manual

previous value variable must come from the init= keyword in the FromLinkName, not in the previous
value variable link itself. Indeed, it isan error to place the init keyword in alink statement that contains the
update from link keyword. Alternatively, theinitial value can come from an .inp files as discussed in
Section 3.3.1.

As an example we shall revisit the Euler integration formula discussed in Section 2.6 (See page. For
simplicity there we implemented the Euler integration formula as a SPARK atomic class with a single port
representing the variable of integration, and the name of this port was used both as the returned result and in
theargument list, i.e.,

x = eul er(x, xdot, dt);

However, this results in unnecessary iteration since the SPARK parser will not know that, internal to the
function, only the past value of x is used. We can use the update from link keyword to correct this
deficiency asfollows. First, we modify the atomic class to have both current and previous x as ports, and

properly designate X as referring to the previous time value:

/* eul er _formula.cc */
#i f def spar k_par ser

port Xx;

port x_p;

port xdot _p;

port dt;

functions {
x = euler_formula(x_p, xdot _p, dt);

equations {
X = X_p + dt*xdot _p;

#endi f / *spar k_par ser*/

#i ncl ude "spark. h"
doubl e eul er _formul a(ArgLi st args) {

const double& x_p = args[O0][1]; /1 previous X
const doubl e& xdot _p = args[1][1]; // previous xdot
const doubl e& dt = args[?]; /1 time step

if(::1slnitial Time())

return args[0].Getlnit();
el se

return x_p + dt*xdot_p;

}

Note that we have named this atomic class euler _formula. Thisallows usto define a macro class called
euler which conceals the complexity of the update from link considerations and preserves the convenient
interface used in the Section 2.6 example. Hereisthe euler macro class:

/* euler.cm */

port X;

port xdot;

port dt;

declare euler_formula e

link .dt e.dt;

link .Xx e. Xx;

link X . X

link XDOT . xdot

link x_p e.x_p update_fromlink = X;
link xdot_p e.xdot_p wupdate fromlink = XDOT;

With this implementation, the ports refer only to current time values of x and X . Internal to the macro class
we create links for both current and previous values of x and X . The previous value variables, however,

52 « Section 3 Advanced Topics

SPARK 1.0 User's Manual

are specified to have their values updated from the corresponding current time values. Note that alink
name, not a port name, must follow the update_from_link keyword. Due to this requirement we define two
links X and XDQT, connect them the ports x and xdot, and use them as arguments to the update from link
keywords. Finaly, notethat it is not necessary to initialize the previous value variables in this example
because, as a consequence of the if-statement in the function definition, they are not used at Initial Time.

There are uses for previous value variables other than in integrators for solution of differential equations.
For example, simulation of discrete time controllers requires past values, both to calculate controller
“integral action” and to determine when to update the controller output. An additional usageis for
introduction of an artificial time delay in atroublesome iterative loop. By simply making some variablein
the loop a previous value variable the need for iterative solution isremoved. If the time step is short, the
error introduced may be acceptable.

3.10 Solution Method Control

While the fundamental, graph-theoretic methodology in SPARK is aways the same, there are some options
you can set to control the actual numerical methods employed. The graphical user interfaces (Windows
95/98/NT or UNIX) provide menus for setting these options. If you are working at the command line, you
can set these options by editing the probName.prf file. However, to explain these options we must first
review the fundamental SPARK methodol ogy.

3.10.1 SPARK Problem Components

As noted previously, SPARK generates a C++ program to solve the problem expressed in your
probName.pr file. To generate this program, graph-theoretic methods are used to decompose the problem
into a series of smaller problems, called “components,” that can be solved independently. A component
might be a sequence of atomic-object inverse functions that need to be executed in order; thisisthe case if
no iteration is required in that particular component. On the other hand, iteration may be required, in which
case the component, in graph theoretic terms, isa“ strongly connected component.” While all equationsin
a strongly connected component are involved in the iterative solution, usually not all variables need be
iterates. Therefore SPARK uses graph algorithms to determine a small set of so called “break variables’
that break all cyclesin the component; these variables constitute a“cut set.”

By default, SPARK will attempt to solve each strongly connected component using the Newton-Raphson
method, treating the cut set as the vector of independent variables (See Section 3.2, page . If your
problem solves correctly with the default method, it is probably best not to changeit. However, if it failsto
solve, it will probably be due to either non-convergence of the Newton-Raphson iteration, or numerical
exceptions (i.e., values of problem variables that exceed the capabilities of the computer). In either case, it
is usually possible to determine which component is having difficulty by looking at the probName.log file
or the run.log file. 'Y ou may then want to change the solution method for that component from among the
options discussed below.

Solving method options fall into two categories: Component Solving Methods, and Matrix Solving
Methods. Component Solving Methods refer either to modifications of the Newton-Raphson method, or a
completely different method of finding values for the break variables that satisfy the component equations.
Matrix Solving Methods refers to the way in which the next estimates of the break variables are determined
from the current values using the Jacobian matrix.

Full explanation of the advanced methods is beyond the scope of this manual. The cited references were
consulted in the SPARK implementation.

Section 3 Advanced Topics ¢ 53

SPARK 1.0 User's Manual

3.10.2 Default Settings

Asnoted in Section 2.2.1 (See page@ every SPARK problem has a probName.prf, created by the SPARK
setup program. When the problem is executed the solving method settings and associated parameters are
taken from this preferencefile. If you use one of the graphical user interfaces, such as WinSPARK or

Visual SPARK, you can use provided menus for setting the solving methods and parameters, and the settings
you specify will be transferred to the problem preferencefile. If for any reason the preference file does not
define a particular method or parameter, default settings built into the source code are used. These default
settings are given in the tables below. These are “safe” but not necessarily recommended settings, so you
should normally provide appropriate settings for your problem.

3.10.3 Component Solving Methods

The available methods for solving the component are listed in Table 3.1. The code numbers are needed
only if you want to set the option by editing the probName.prf file. To set the component solving method in
the preference file, the ComponentSolvingMethod key must be set to the desired code number under the
ComponentSettings key for the component in question. When using a graphical user interface the available
choices are on a selection menu. Note that the solving method chosen will depend on the component. For
example, non-iterative components do not need any solution method. Also, when thereisiteration, not all
methods are applicable for components with more than one break variable. For example, Brent’s method
applies only when there isa single break variable. Y ou can examine the probName.egsfile to see how
many break variables there are for each component.

Table 3.1 Component Solving Methods (Not all implemented in initial release)

M ethod Code Notes Reference

Newton-Raphson 0 With or without (Conte and de Boor 1985)
relaxation (default).

Multi-start ABS 1 (Sen 1994)

Fixed point iteration 2 Successive substitution

Steffensen acceleration 3 (Press, Flannery et a. 1988)

Secant 4 Multidimensional (Press, Flannery et al. 1988)
secant (using (Dennis and Schnabel 1996)
Broyden's update
formula).

Homotopy 5 First degree only.

Brent 6 Valid only for single (Press, Flannery et al. 1988)
break variable
components.

AllinTurn 7 Try each of the above
methodsin listed order.

In addition to the basic solution method for a component, there may be parameters that control how the
method behaves. Available control parameters as shown in Table 3.2. For example, with Newton-Raphson
method you may want to use “ Relaxation,” whereby the calculated corrections to the break variables are
only partially applied. Thisisachieved by using afractional relaxation coefficient. Additionally, in some
cases it may be beneficial to “scale” the Jacobian matrix. SPARK allows four different scaling methods.

54 « Section 3 Advanced Topics

SPARK 1.0 User's Manual

The default valuesin the table are used only if the parameter in question is not defined in the probName.prf
file. However, since a preference fileis created automatically for your problem, these defaults are seldom

used.

Table 3.2 Component Solution Parameters

Parameter

[key in preferencefile]

Allowed values

Notes

Maximum lterations

[Maxlterations]

An integer >0

Maximum allowed iterations when iterative
solution is used.

Default = 50

Tolerance

[Tolerance]

A floating point
number>0.0

Solution relative tolerance. Initerative
solution, iteration will continue until no
break variable y changes by more than
Tolerance* ly| between two successive
iterations.

Default = 1.E-6

Maximum Tolerance

[MaxTolerance]

A floating point
number > Tolerance

Maximum Tolerance used for a “relaxed”
tolerance check instead of Tolerancein case
of no convergence after maximum iterations
(see Tolerance definition above).

Default = 1.E-3

Absolute Tolerance

A floating point

Value at which the variable with the smallest

[AbsTolerance] number > 0.0 _oro!er pf_ magnitude is essentially
insignificant.
Default = 1.E-6
Jacobian Evaluation Step Integer >=1 The Jacobian will be re-evaluated only after
[TrueJacobianEval Step] this number of iterations.
Default = 1
Epsilon A floating point Change in independent variable used in
[Epsilon] number >= 0.0 evaluation of partial derivatives for Jacobian

calculation.
Default = 0 (see Section 3.10.6).

Section 3 Advanced Topics ¢ 55

SPARK 1.0 User's Manual

Step Control Method Integer >=0 Controls the length of the step computed by
[SepControlMethod] Ehe corrlponent solving method to achieve
global” convergence.

0 = Fixed relaxation (see Relaxation
Coefficient);

1 = Basic iterative backtracking
attempting to decrease Euclidean norm of
residuals;

2 = Backtracking with line march.

Default = 0.

Relaxation Coefficient 0 < Floating point Thisisamultiplier applied to the Jacobian
. . number <= 1.0 calculated change to get the actual change
[RelaxationCoefficient] during Newton-Raphson iteration.

» Fixed relaxation coefficient used with the
step control method O.

« With the other step control strategies, this
is the relaxation coefficient used to
recover when the backtracking method
fails to decrease the cost function.

Default = 1.0

Scaling Method Integer >=0 Scal es the Jacobian before using.
[ScalingMethod] 0=Noscaling; _

1 = Curtis-Reid optimum scaling of
Jacobian;

2 = Scaling of Jacobian based on
right-hand side residual vector;

3 = Scaling of Jacobian based on
columns.

Default = 0.

3.10.4 Matrix Solving Methods

In Newton-Raphson and related component solving methods a linear set of equations must be solved at each
iteration, yielding a correction to the current estimate of the cut set variables. By default, SPARK will use
Gaussian elimination to effect this solution. However, other options are available as shown in Table 3.3.
The code numbers are needed only if you want to set the option by editing the probName.prf file. To set
the matrix solving method in the preference file, the MatrixSolvingMethod key must be set to the desired
code number under the ComponentSettings key for the component in question.

22 (Dennis and Schnabel 1996) should be consulted for more details on the backtracking with line search
step control algorithm.

56 ¢ Section 3 Advanced Topics

SPARK 1.0 User's Manual

Table 3.3 Matrix Solving Methods

M ethod Code Notes Reference

Gaussian Elimination 0 Default (Conte and de Boor 1985)
Singular Value 1 Poorly conditioned matrix. (Press, Flannery et al. 1988)
Decomposition

(SvD)

Lower-Upper 2 (Conte and de Boor 1985)

Factorization (LU)

In addition to the matrix solving methods shown in Table 3.3, there are also parameters that control their
behavior. These are shown in Table 3.4. Note that not all parameters apply to every method.

Table 3.4 Matrix Solving Method Parameters

Parameter Values Notes
[key in preferencefile]
Pivoting Method 0,12 Only used with the Gaussian
[PivotingMethod] Elimination .matrllx solving method.
0 = No pivoting;
1 = Partial pivoting, row pivots;
2=Totd éivoting, rows and
columns.
Default=1
Refinement Method O<Integer <5 Only used with the LU solving matrix

[RefinementMethod]

solving method.

3.10.5 Stopping Criterion for Iterative Solution

SPARK employs a mixed absolute/rel ative tolerance as the stopping criterion used to decide when to
terminate the iterative solution in acomponent. That is, for a break variabley, the convergence criterion is
that the iteration error satisfies:

Error(y) < max(AbsTolerance, Tolerance E|]y|)

(3.6)

The value of Tolerance is specified with the key “Tolerance” in the problem preference file on a
per-component basis. The value of AbsTolerance is specified with the key “AbsTolerance” for the
component in question. By default, it should be set to Tolerance unless the variables have very different

orders of magnitude.

23 The Gaussian elimination solving method with full pivoting is also referred to as the Gauss-Jordan
elimination solving method in (Press, Flannery et al. 1988).

Section 3 Advanced Topics ¢ 57

SPARK 1.0 User's Manual

Such a scaled tolerance requirement is necessary to achieve convergence with a consistent number of
significant digits, p, for variables with different orders of magnitude. The relationship between the
tolerance and the number of significant digitsin the solutioniis:

Tolerance =10~ " (3.7)

Clearly, it isimportant to carefully select the error tolerance setting for each component so as to accurately
reflect the scale of the problem. For components whose break variables are scaled very differently from
each other, the AbsTolerance value should be set to the value at which the break variable with the smallest
order of magnitude is essentially insignificant. This should ensure that the variable with the smallest scale
does not limit the accuracy with which the other variables are computed. When all the break variables are
of comparable order of magnitude and their values are not near the AbsTolerance value, then the Tolerance
value gives an indication on the number of significant digitsin the solution, using Equation (3.7). Inthis
case, Equation (3.6) tends to enforce a pure relative tolerance requirement. However, if the values of the
break variables are near the AbsTolerance value, then you should not expect the relation in Equation (3.7)
to hold precisely. Inthis case, Equation (3.6) tends to enforce a pure absol ute tol erance requirement.

3.10.6 Scaled Perturbation for Partial Derivatives

In SPARK, Newton based iterative solution methods (i.e., Newton-Raphson and Homotopy) require the
Jacobian matrix to be computed. This matrix consists of the partial derivatives of the iterated system of
equations with respect to the break variables. These partial derivatives are approximated by finite
differences. For example, the partia derivative of the equation f(t, X, y) with respect to the break variable y
is approximated using the following formula:

of (t,X,y) - ft,x,y+4y)-f(t,xy)
ay Ay

(3.8)

Here Ay is called the perturbation value, or increment, of the variabley. Y ou can specify the value of the

perturbation value for each component using the keyword Epsilon in the problem preference file (See
Section 3.10.3, page B4).

The differencing procedure in digital computation is sensitive to roundoff error. The main source of
difficulty in computing the Jacobian matrix by finite differencing is the choice of the perturbation Ay .
Consequently, SPARK provides the option to use a scaled perturbation value to compute the partial
derivatives. Thisisdone by specifying a zero value for the Epsilon component setting in the preference file
for the component in question. For example, if you wish to use scaled perturbation in Component 0, the
preference file should include:

Conponent Setti ngs (
0 (
Rel axati onCoefficient (1.0 ())
Epsilon (0 ())
Tol erance (le-6 ())

)
When Epsilon is specified as zero, SPARK computes the perturbation value for the variable y as:

Ay = sign(y) Dmax(Y, |y +h0, Tolerance) 1/URound (3.9

58 ¢ Section 3 Advanced Topics

SPARK 1.0 User's Manual

Here, URound is the machine unit round-off error. The derivative, Y, with respect to the independent
variable (usually time) is approximated using the explicit Euler scheme. Theterm |y +h [y| isincluded to
represent the predicted value for y at the next step. Thisis because even if |y| happens to be near zero, it is
quite possible that a nearby value of y is not so small, and selecting |y +h [y| will prevent a near zero
perturbation from being used. In the event that |y| and |y +h Ey| are both near zero, the error tolerance
Tolerance is used as alower bound in the formula to prevent using too small a perturbation. Indeed, by
setting the error tolerance, you tell the SPARK solver that it isthe smallest number which is relevant with
respect to the break variablesy in this component.

The formulain Equation (3.9) perturbs about half of the digits of the variabley when y is significantly
larger than Tolerance. Finally, note that the sign of the perturbation Ay computed with Equation (3.9) will
be negative if the solution is decreasing. Unfortunately, this choice is a potentially source of difficulty for
problems where some functions are undefined for y < 0 or not differentiable at y = 0.

3.10.7 Update Component Settings at Run Time

In some situations you may need to change some parameters of the component settings at run-time. To
support this need, SPARK optionally checks the time stamp of the problem preference file while executing,
and when it changes the file is read again, loading the new component settings. These settings become
effective for the next time step. However, in SPARK 1.0, only the following parameters can be updated at
run-time using this mechanism:

» Relaxation coefficient
» Tolerance
» Epsilon
To allow updating component settings at run time, the following entry should appear in the run control file:
Updat eConponent SettingsAtRunTinme (1 ())

If thisis not specified, the parameters of the component settings will not be updated at run-time.

These controls give you control over the convergence process, which may be important for large nonlinear
problems requiring long run times. In order to determine if and when you need to change the settings, you
should set the diagnostic level 1 or 3 (see Section 3.11.5, page to be able to follow interactively the
convergence process.

3.11 Debugging SPARK Programs

Often SPARK will find cal culation sequences leading to successful problem solution without intervention.
However, solution of nonlinear differential and algebraic equationsis not easy, even for SPARK, and in
some cases you may get error messages. These may be during the initial processing where your input is
being parsed, while executing the setup program that convertsit to a solver program, or during execution of
the solver program, i.e., at run time.

Section 3 Advanced Topics ¢ 59

SPARK 1.0 User's Manual

3.11.1 Parsing Errors

Parsing errors are usually syntax errors, asin any programming language. These errors are reported in the
parser.log file, normally placed in your project directory. They should be easy to interpret, but if not the
command reference in Section 4 (See Page [/1) may be helpful.

3.11.2 Setup Errors

During the setup phase SPARK may have other difficulties due to input errors. For example, you may have
specified a problem for which no matching can be found between equations and variables. This can happen
even if you have an equal number of equations and free variables (i.e., links). Asan example of this,
consider the 4sum problem when x1, X5, x6, and X7 are specified asinputs. Thisis not well posed because
it over-determines the equation for s3 while under-determining s2. SPARK will report such errors as
“unableto find amatching.” Subtle errors of this nature can occur in development of complex models.
Setup errors are reported in either setup.log or probName.log, depending upon your platform.

Unfortunately, lack of matching can also arise for well posed problems if you have not provided enough
inverses for your atomic objects. Complex models involve equations that maybe difficult to invert, even
with symbolic algebratools. Consequently, it is common for SPARK users to omit the difficult inverses for
some equations, providing only those easily come by. Usually, thisis acceptable practice since SPARK
explores many paths to a get a solution sequence and usually finds one. However, if you are experiencing
matching problems and have omitted some inverses you may want to consider using implicit inverses. For
example, if you cannot solve g(x,y,2) = 0 for x, simply write for the inverse

x=1(xY,2)

where f(x,y,2) is an algebraic rearrangement of g(x,y,2) that isasfar asyou can go in isolating x. Best
numerical performance will be obtained if f(x,y,2) is only weakly dependent upon x. However, if all else
fails, smply write:

X=X+9(XxY,2)

SPARK will discover that x is on both sides of this “inverse” and place it in the cut set, in effect inverting
the troublesome equation numerically.

3.11.3 Solution Difficulties

Even after SPARK has successfully created a solver program there can be difficulties in finding a solution.
Thisis because of the nature of nonlinear systems of equations, with which numerical analysts have been
struggling for many years. Here we are referring to convergence difficulties; the solver iterates the
maximum allowed number of times (set by default to 50) without bringing the solution into the error
tolerance (default 1.e-6). If you work with complex systems, resolving these difficultiesis the greatest
challenge you will face. Run-time errors are reported to run.log or probName.log, depending upon your
platform. More detailed error messages and diagnostic can be found in error.log.

With SPARK, you attack convergence problemsin two basic ways:. estimating better values to start the
iteration, and by trying to alter the solution sequence. The importance of good iteration initial valuesiswell
known; in this regard, the only difference between SPARK and other simulation toolsis with SPARK, due
to reduction in the number of iteration variables, you do not have to specify as many guess values. We
discuss how to set initial iteration valuesin Section 3.3.2 (See Page @

60 ¢ Section 3 Advanced Topics

SPARK 1.0 User's Manual

The second strategy, controlling the solution sequence, is based on the observation that iteration can usually
be done many different ways, often differing in the direction in which calculations flow around cyclesin the
problem graph. Sometimes convergence can be achieved by calculating in the opposite direction.
Consequently, SPARK provides syntax in the definition of problems and classesin order to control,
indirectly, the calculation direction. Y ou can always see the solution sequence chosen by SPARK in the
.egs file produced by the setup program. Open this file with a suitable viewer or editor and use it as guide
in understanding and improving your problem solution seguence.

Match_level isvery effective in reversing the direction of calculationsin SPARK. By default, matchings
are found based only on order of objects and links found in the problem specification file. By forcing or
encouraging a different matching you can often improve numerical performance, and perhaps achieve
convergence.

The relevant keywords are match_level and break level. Each can be set to a value between 0 and 10.
When left unspecified, these levels default to 5. The match_level keyword is placed in alink or port
statement, and specifies the relative desirability of matching that link variable to a particular object in the
link statement. For example,

link x a_obj.pl natch_level = 10, b_obj. p3;

tells SPARK that you would prefer that object a_obj should be matched with the x problem variable. You
could say somewhat the same thing by the statement

link x a_obj.pl, b_obj.p3 match_|evel = 0;

which says you would prefer that x not be matched with object b_obj. Provided that you not simply
encourage selection of the matching that would be found by default, the direction of calculationsin the
problem will bereversed. Currently, the second form is stronger that the first due to the implementation of
the matching algorithm used in SPARK.

Break level parallels the match_level idea, but appliesto the discovery of acut set, i.e., selection of
variablesto break cyclesin the problem graph. When thereisacycle, usually many problem variables are
encountered as you work your way around the loop. It is easy to see that any of these variables will break
theloop. By default, SPARK sets break preferenceto 5 for all variables, so the break selected is
determined solely by order in the problem definition. Y et, there are sometimes arguments for preferring
one over another.

A simple example is based on starting value availability. If you have the choice of breaking on enthalpy or
temperature, you may prefer the latter simply because you are likely to be able to better estimate iteration
starting values for temperature. Some analysts also feel that different break variableslead to better
convergence. However, the “gain” around the loop is going to be the same regardless, so this may not be a
strong argument. Nonetheless, if you have any reason or hunch that a particular variable would be a better
break, giveit ahigh break level. To do so, includeitinthe link statement:

link x a_obj.pl break level =7, b_obj.p3 match_| evel = 10;

In the current implementation, matching and break levels only encourage SPARK to match or break the way
you wish. Thisis because we wanted to give SPARK maximum opportunity to find solution sequences,

and denying certain matchings and breaks may prevent any solution at al. In later versions we may also
provide forced matchings and breaks.

Finally, it should be noted that these are only indirect tools, sometimes having little or no effect on the
solution sequence. For example, setting break _level on alink that does not happen to bein acycle will
have no effect, and as already noted setting amatch_level to force a match that is selected by default is also
ineffective.

Section 3 Advanced Topics ¢ 61

SPARK 1.0 User's Manual

3.11.4 Trace File Mechanism

Sometimes it may be helpful to see intermediate results of the iterative solution process. Thisis especially
important when your problem is experiencing convergence difficulties. You can get such output by using
the TraceFiles segment under the key ComponentSettings for the component in question in the
probName.prf file. Thisisdone for individual components (See Section 3.10.1, page . Aswith solution
control parameters (See Section 3.10, page , setting this flag is done most conveniently with the aid of a
SPARK graphical user interface. Otherwise, you can edit the probName.prf file directly with any text
editor.

The TraceFiles segment has five alowed values as shown in Table 3.5.
Table 3.5 Keys and Values for TraceFiles Segment

TraceFilesKey and Value M eaning

@] No trace output.

Jacobian (fileName ()) Jacobian of residua functions printed
whenever it is recomputed.

Increments (fileName ()) Increments of all variables printed at every
iteration.

Residuals (fileName ()) Break residuals printed at every iteration.

Variables (fileName()) All problem variables printed at every
iteration.

Within each component, you can specify up to four trace files entries with the name of each file preceded by
one of the keyslisted in Table 3.5. Each key specifies the type of the trace file that will be written to the
file following the type key. For example, the following segment could be inserted in ComponentSettings O
of aproblem preference file:

Conponent Setti ngs (
0 (

TraceFiles (

Jacobi an (spring_ jac.trc ())
Increments (spring_inc.trc ())
Residuals (spring res.trc ())
Variables (spring var.trc ())

)

Any file name with the extension .trc can be used, except it cannot be repeated. That is, you cannot use the
same file name for tracing in the same component, or in a different component.

If no trace files are wanted, the TraceFiles segment for the component should be:

TraceFiles ()

62 ¢ Section 3 Advanced Topics

SPARK 1.0 User's Manual

3.11.5 Problem-level Diagnostic Reports

In addition to the Trace facility (See Section 3.11.4, page SPARK has a problem-level diagnostic
facility. To usethisfeature, the DiagnosticLevel keyword must be set to something higher than 0 in the
problem run control file (See Section 2.2.1, page@. Three different modes trigger increasing level of
diagnostic to the cout stream. When running the runspark command, the output goes to therun.log file.
The default mode is the silent mode.

Table 3.6 Problem-level Diagnostic Flag Values

Mode Entry inrun file Description
Silent (default mode if no DiagnosticLevel (0 () Outputs run control parameters, input
DiagnosticL evel is specified) data, output and snapshot filesif any
specified
Report convergence DiagnosticLevel (1 () At each iteration, the convergence

progressis reported for each
component. Includes scaled residuals
norm, convergence error, requested
tolerance, name and value of the
worst-offender variable.

Report results DiagnosticLevel (2 () All variables are reported with their
names and values at each step.

Report convergence + Results DiagnosticLevel (3 ()) Combineslevel 1 and 2.

3.12 Output and Post Processing

When SPARK runs there is output to the screen and to an output file with extension .out. The screen output
isprimarily for visual feedback, |etting you know where SPARK isin processing your problem. The output
file contains results of the numerical solution process at each time step. The format of the output fileis
exactly like that of input files, i.e.,

n label label label
t0 value value value
tl value value value

etc.

where n is the number of reported variables, each label is a problem variable with the report keyword
expressed in the problem file, and each value is the value for the corresponding variable at time t;.

The output of SPARK can be read by conventional spreadsheet and plotting programs. If you use Microsoft
Excel or asimilar program, simply open the SPARK output file into a worksheet and use tabs as the
delimiting character between fields. Thiswill place your output neatly into rows and columns, from which

Section 3 Advanced Topics ¢ 63

SPARK 1.0 User's Manual

you can construct plots (charts) in the usual Excel manner. If you use gnuplot, a program called makegnu is
provided with WInSPARK that will generate an input file for that program.ﬁl To use makegnu, type:

makegnu room fc.out roomfc.plt <enter>
The output file, room_fc.gnu, will contain the gnuplot commands, e.g.:

set data style lines

set x|l abel "tine"

set ylabel "ntp"

plot "roomfc.out" wusing 1:2 notitle
pause -1 "Press <enter>"

set ylabel "Qfl ow'

plot "roomfc.out" wusing 1:3 notitle
pause -1 "Press <enter>"

set ylabel "Ta"

plot "roomfc.out" wusing 1:4 notitle
pause -1 "Press <enter>"

set ylabel "T floor"

plot "roomfc.out" wusing 1:5 notitle
pause -1 "Press <enter>"

Then to plot with gnuplot, type
gnuplot roomfc.plt <enter>
This assumes you have gnuplot in your command path.

More elaborate plots, combining several results on the same plot, for example, can be done by editing the
gnuplot input file, or by running gnuplot interactively. The gnuplot documentation should be consulted for
more information.

3.13 Snapshot Files and Restarting Solutions

There are occasions on which you may want to stop a simulation, then restart it from the same point at a
later time. This need can arise when the problem experiences along run time, or a difficult solution. Or,
you may want to repeat a simulation using precisely the same initializations of dynamic and break variables.
These techniques are supported in SPARK with the notion of snapshot files. Y ou can request that snapshot
files be generated at Initial Time and/or Final Time as discussed below.

A snapshot file contains the values of all problem variablesin aformat identical to that of anormal output
report. And, because SPARK input files and output files have the same format, you can specify a snapshot
file asan input file in a subsequent run of the same problem.

Y ou request generation of snapshot files by specifying corresponding keys in the run control file (See
Section 3.14, page, along with the desired name for the snapshot file. Two keys are available,

Initial SnapshotFile and Final ShapshotFile. The values of these keys should be paths to the files where you
want the results saved. For example, if you want both initial and final snapshot files, your run control file
probName.run must contain the following two clauses:

Initial ShapshotFile (probNanme.init ())
Fi nal SnapshotFi | e (probNanme.snap ())

24 Although not provided in the Visual SPARK release, makegnu is available free from Ayres Sowell
Associates, Inc. and will run on UNIX aswell as Windows platforms.

64 ¢ Section 3 Advanced Topics

SPARK 1.0 User's Manual

Initial SnapshotFile generates a snapshot file with the initial time solution in probName.init, whereas

Final ShapshotFile generates a snapshot file with the solution at the final time in probName.snap. Note that
the file names, including the extensions, are arbitrary, i.e., you can use whatever extension you wish.
Normally, you will want to include the file path to specify where it isto be saved. Inthe example, itis
saved in the current working directory.

To use asnapshot file for initializing a subsequent run you simply specify it in the InputFiles clause in the
run control file, with the other input files. For example, to restart your probleminitialized from the final
solution of the previous run, captured in probName.snap, in probName.run modify the InputFiles clause to
read:

I nputFiles (
pr obName. snap ()
probNane.inp ()

)

Another way to use snapshot file to restart a problem is to first solve a static problem (no integrators)
derived from the dynamic problem and with initial conditions for some of the unknowns of the dynamic
problem. Thisis mimicking what we'll do automatically in SPARK 2. The result snapshot file of the
solution of the static problem can then be used to start the dynamic problem with the desired initial
conditions enforced.

A snapshot file contains the values for all the problem variables, not just those that were tagged with the
report keyword in the problem definition file. This means that a snapshot is a very powerful reporting and
diagnostic mechanism as well as serving as restart initialization files. Notethat if Final ShapshotFile was
specified, in the event of a nonconvergence or other solution failure, then the snapshot file will be generated
at the time where failure occurred. This provides values of all variables at the point of non convergence,
which might be helpful in discovering the reasons for non convergence.

3.14 Run Control File

We introduced the SPARK run control file, probName.run, in the Section 2.2.1 examples (See page E
There, we were concerned with only the basic, required elements of this file needed to run simple problems.
In this Section we will examine the run control file further, showing the format as well as all aspects of a
SPARK run that can be controlled from it.

The run control information needed for a SPARK problem comprises eleven keys and values as shown in
Table 3.7. Items shown in boldface are required.

Section 3 Advanced Topics ¢ 65

SPARK 1.0 User's Manual

Table 3.7 Run Controls
Key Definition Typical value
InitialTime The time at which the simulation 0.0
begins.
FinalTime The time at which the simulation 0.0
ends.
Timel ncrement The time between solution poi ntsBd | 1.0
FirstReport The time at which the first output is | 0.0
desired.
ReportCycle The time interval between output >= Timelncrement
reports.
DiagnosticL evel Level of diagnostic output desired. 0
InputFiles List of input file paths. probName.inp
c:\Phoenix\weather.inp
OutputFile Output file path. probName.out
UpdateComponentSettingsAtRunTime | Set to 1 to allow updating 0 (default)
component settings at run time (only
Tolerance, Epsilon and
RelaxationCoefficient can be
updated)
Initial SnapshotFile Initial time snapshot file path. probName.init
Final SnapshotFile Final time snapshot file path. probName.snap

Thisinformation is stored in the file probName.run using the preference file format, as described in
Appendix B (See page. A typical run control fileis then:

(

Initial Time

Fi nal Ti ne

Ti mel ncr enent
Fi r st Report
Report Cycl e

Di agnosti cLevel
I nput Fi |l es

QutputFile
Initial ShapshotFile
Fi nal SnapshotFi |l e

()
)
()
)
10)

3 ()
frst_ord.inp ()

frst_ord_ic.inp ()

e N R T N T
coouo
o OO

frst_ord.out ())

A~ AN NN

Updat eConponent Setti ngsAtRunTime (1 ())

)

frst_ord_dyn.init ())
frst_ord_dyn.snap ())

25|n SPARK 1.0, the stepsize or time increment is constant during the course of the simulation. Future
versions of SPARK will support variable time-stepping.

66 ¢ Section 3 Advanced Topics

SPARK 1.0 User's Manual

3.15 Using SPARK library functions in an atomic
class

In Section 3.1 (See page, we introduced the boolean function Isnitial Time() used in the implementation
of the Euler intergator class. The function IsInitial Time() is aglobal function that belongs to the SPARK
library. The SPARK library functionsthat can be called from within the inverse of an atomic classfall into
four categories. error handling functions, access functions, predicate functions and math functions. The
C++ prototypes for the SPARK library functions can be found in the header filesin the directory
vsparkiinc\. To be ableto use the SPARK library functionsin an atomic class, the header file spark.h
should be included in the file using the C preprocessor #define directive.

3.15.1 Error handling functions

These library functions provide support to handle errors from within an atomic class.

The library function WriteToErrorLog() lets you write a message to the error log file, called error.log. The
prototype for thisfunction is:
void WiteToErrorLog(

const char* strFil eNane, /1 name of the atom c cl ass
const char* strlnverseNanme, // name of the inverse function
const char* strMsQ); /1 nmessage to wite out

For example, in the class effprl.cc defined in the HVAC toolkit, when the reference heat exchanger

effectiveness eff becomes greater than one, we reset the value to a “typical” value and write an error

message to the error log to notify the user. This can be done using the following code snippet.
doubl e ntuprl (ArgList args)

{..
char ErrMsg[100];
sprintf(ErrMsg, "eff = effp * cRatio = %f nmust be <= 1.0\n",
eff);
::WiteToErrorLog(_ FILE_ P8 "ntuprl ()", ErrMsg);
}

If you wish to stop the execution of the simulation from within an atomic class, you should use the function
ExitFromAtomicClass() Eto ensure proper destruction of the objects instantiated by the SPARK solver.
The argument list and the usage of this function is similar to the one of the function WriteToErrorLog().

26 FILE__isthe name of a predefined ANSI C macro that the compiler/preprocessor expands to a
C-string (i.e. an object of type char*) containing the name of the current sourcefile.

27" Avoid calling the C library function exit() directly from an atomic class as this does not allow SPARK to
carry out necessary cleanup tasks. The SPARK library function ExitFromAtomicClass() callsin turnthe C
function exit().

Section 3 Advanced Topics ¢ 67

SPARK 1.0 User's Manual

voi d ExitFromAt oni cCl ass(

const char* strFil eNane, /1 name of the atom c cl ass
const char* strlnverseNanme, // name of the inverse function
const char* strErrMsQ); /1 description of error

3.15.2 Predicate functions

These library functions return True or False depending on the state of the simulator.
bool Islnitial Time();
bool 1sFinal Time();

3.15.3 Access functions

These library functions provide read-only access to some internal variables of the SPARK solver.
unsi gned Get St epCount () ;
doubl e Get d ock();
doubl e Get St epsi ze() ;

3.15.4 Math functions

These library functions provide basic mathematical operations that are not part of the C/C++ math library
defined in the header file <math.h> . They are used in the implementation of the SPARK HVAC toolkit.
These functions are self-explanatory.

doubl e mi n(double , double);

doubl e nax(double , double);
doubl e sign(double);

3.15.5 Access methods for the TArgument class

The SPARK inverses are C functions that expect alist of arguments of the type TArgument. The
TArgument type isimplemented as a C++ class. The class declaration can be found in the header file
vsparklinc\value.h. The list of methods that can be used with a TArgument object is shown in Table 3.8.

Table 3.8 List of access methods for an object of the TArgument class

M ethod prototype Description

operator TArgument::doubl e() const Returns the current value of thelink asa
double

operator TArgunment::GetVal () const Same as previous method.

28 |n the C++ standard library, the header files assumed from the C standard now have the new prefic ¢
instead of the old extension .h, i.e., #include <math.h> becomes #include <cmath>.

68 ¢ Section 3 Advanced Topics

SPARK 1.0 User's Manual

doubl e TArgunent::

operator[](int idx) const

Returns the idx (idx>0) past value of the
link asadouble

doubl e TArgunent::

Getlnit() const

Returns the initial value of thelink asa
double

doubl e TArgunent::

Get M n() const

Returns the min value of thelink as a
double

doubl e TArgunent::

Get Max() const

Returns the max value of thelink as a
double

char* TArgument:: Get Name() const

Returns the name of the link asa C-stri n@l

char* TArgument::GetUnit() const

Returns the unit of the link as a C-string

29 We call a C-string an object of type char* .

Section 3 Advanced Topics ¢ 69

SPARK 1.0 User's Manual

Section 4 SPARK Language
Reference

4.1 Notation Used in this Section

1. Keywords are shown uppercase, although they are case insensitive in the language.

2. ¢ meansrequired syntax.

3. va_or_par meansany value, or aparameter name.

4. Items separated by | means choose one of the items (e.g., <x|y|z> meansxoryorz)

5. Iltemsinside question marks, e.g., ?connectionsl?, are defined later in the construct in which they
appear.

6. When referring to hierarchy, the problemiis called the highest level, while the atomic classis the
lowest.

4.2 Special characters

Specia characters are those used by the SPARK parser to identify parts of the language. They should not be
used in user names.

1. UsedinSPARK syntax: " #(),.;=[]1'"{} ~/* SPACE TAB NL (newline)
2. Delimiters: SPACE TAB NL. More than one of these characters or combination are ignored.
3. The statement terminator is the semicolon (;).

4.3 Names and Other Strings

4.3.1 Reserved Names

#endif #ifdef ABSTRACT

Section 4 SPARK Language Reference 71

SPARK 1.0 User's Manual

ABSTRACT_END BAD_INVERSES BREAK_LEVEL
CONNECT_HINT DECLARE DEFAULT
EQUATIONS FUNCTIONS GLOBAL_TIME
GLOBAL_TIME_STEP INIT PRED_FROM_LINK
INPUT KEYWORDS LINK

MATCH_LEVEL MAX MIN

NOERR PARAMETER PAST_VALUE_ONLY
PORT PRED PROBE

REPORT SIMULT_OUT UPDATE_FROM_LINK
VAL

Notes. Reserved names are case insensitive, except for #ifdef and #endif.

4.3.2 Rules for User Specified Names

They must not contain any reserved characters.
They must not begin with adigit.

They are case sensitive.

They may not be the same as reserved names.
They can be of any length.

a k~ w DR

4.3.3 Literals

User specified literal strings are enclosed inside double quotes, e.g., "Thisisaliteral”. They can contain
any character except the double quote (*).

4.4 Comments

There are two kinds of comments:
1. /*comment...*/ C-like comment
2. [lcomment... C++ style comment to end of line

4.5 Compound Statements

A compound statement are delimited by curly braces: { ... }. Examples of compound statements are
FUNCTIONS and EQUATIONS.

72 « Section 4 SPARK Language Reference

SPARK 1.0 User's Manual

4.6 Atomic Class File

The SPARK atomic classisthe smallest modeling element. Atomic classes may be combined in macro
classes to form larger modeling elements, or used directly in problem files.

File name convention : class name.cc

Format:

/* CLASS class_nane "description..."
KEYWORDS=keywor d1, .. .;
ABSTRACT
*/
#i f def SPARK PARSER ¢ if file contains C++ functions
PARAMETER statenents

PORT statenents .

EQUATI ONS { equation statenments }

FUNCTI ONS { function statenments } .

#endi f /* SPARK PARSER*/ ¢ if file contains C++ functions
#i ncl ude "spark. h" ¢ if file contains C++ functions

I nverse C++ functions go here.

Notes:
1. PARAMETER statements must appear before they are referenced.
2. PORT statements must appear before EQUATIONS and FUNCTIONS statements.

3. Whilethe material inthe /*...*/ header isignored by the parser, it may be used by browsers and/or
utility programs.

4.7 Macro Class File

A SPARK macro class connects atomic and other macro classes to form larger modeling el ements.
File name convention: class name.cm

Format:

/* CLASS MACRO class_nane "description..."
KEYWORDS=keywor d1, .. .;

A}BSTRACT

*

PARAMETER statenents

PORT statenents *
PROBE statenents
DECLARE statenents *
LI NK statenents .

Notes and restrictions:
1. PARAMETER statements must appear before they are referenced.
2. PORT statements must appear before any DECLARE or LINK statements.

3. DECLARE statements must appear before any LINK statements that refer to the objects defined by
DECLAREs.

Section 4 SPARK Language Reference « 73

SPARK 1.0 User's Manual

4. While the material in the /*...*/ header isignored by the parser, it may be used by browsers and/or
utility programs.

4.8 Problem File

The SPARK problem file combines macro and/or atomic classes to form the largest modeling element.
File name convention: problem _name.pr.

Format:

/* PROBLEM cl ass_nane "description..."
KEYWORDS=keywor d1, .. .;

ABSTRACT

*/

PARAMETER statenents

PROBE statenents

DECLARE statenents *

LI NK statenents .

I NPUT statenents ¢ @
Notes:

1. PARAMETER statements must appear before they are referenced.

2. DECLARE statements must appear before any LINK statements that refer to the objects defined
by DECLAREs.

3. Whilethe material inthe /*...*/ header isignored by the parser, it may be used by browsers and/or
utility programs.

4.9 PORT Statement

The PORT statement describes an externally visible connection point (interface variable) of aclass. When
an object isinstantiated from a class by a DECLARE statement, the connections can only be made to its
ports.

The PORT statement has two forms:
1. Atomic port, which does not have subports.
2. Macro port, which has subports.

An atomic port has the form:

PORT port _nane .
[unit]
"description..."
CONNECT_HI NT="-cl assl. portx, class2.porty"
NOERR
DEFAULT=val or _parl
I Nl T=val _or_par2 M N=val _or_par3 MAX=val or_par4
BREAK LEVEL=val or_par5 WNATCH LEVEL=val or_par6 ;

30 Alternatively, LINK statements with INPUT keyword can be used.

74 « Section 4 SPARK Language Reference

SPARK 1.0 User's Manual

port_name: Name of the port; must not contain any reserved characters.
[unit]: Unit of the port. It isused to give awarning if variables with different units are linked.
"description...": Short description of the port. Thisfield is used by browsers.

CONNECT_HINT: Used by browsers to determine acceptable connections.

"-classl.portx, class2.porty" means that connecting this port to portx of any instance of classl is
not permitted, but connecting this port to porty of any instance of class2 is encouraged. For
acceptability, first units, then CONNECT _HINTs are checked.

NOERR: Do not give error message if this port is not connected when this classis used
(instantiated). Allows ports that can be optionally used.

DEFAULT: If this port is not connected, behave asif thisvalue isfixed at val_or_parl.

INIT, MIN, MAX: Initial, minimum, and maximum values assigned to variable created by
connections to this port. Higher level settings will take precedence.

BREAK_LEVEL, MATCH_LEVEL: The default break_level and match |evel values for
connections to this port.

A macro port has the form:
PORT port_nane ¢

[unit1]

"port description..."

CONNECT_HI NT="-cl ass1. portx, cl ass2. porty"

NCERR

. Subport _nanel .

[unit2]

"subport description..."

DEFAULT=val _or_par1l

I Nl T=val _or_par2 M N=val or_par3 MAX=val _or_par4

BREAK LEVEL=val _or_par5 MATCH LEVEL=val or_par6
, . Subport _nane2
etc.

Port_name: Name of the port; must not contain any reserved characters.
[unitl]: Unit of the port. It isused to give awarning if variables with different units are linked.
"description...": Short description of the port. Thisfield isused by browsers.

CONNECT_HINT: Used by browsers to determine acceptable connections.

"-classl.portx, class2.porty" means that connecting this port to portx of any instance of classl is
not permitted, but connecting this port to porty of any instance of class2 is encouraged. For
acceptability, first units, then CONNECT_HINTSs are checked.

NOERR: Do NOT give error message if this port is not connected when this classis used
(instantiated).

.subport_name: Name of the subport. Note the leading dot (.). If subport contains other subports,
thisis specified as .subport_name.subport_of subport_ Note that subport_of subport_nameis
specified for subport_of . For example, if we have port x with subports a, b and subport a hasits
subports al,a2 we write:
PORT x ...etc.
.aal ...etc.
, .82 ...etc.
,.b ..etc. ;

Section 4 SPARK Language Reference « 75

SPARK 1.0 User's Manual

7. DEFAULT: If this subport is not connected, behave asif thisvalue isfixed at val_or_par.

INIT, MIN, MAX: Initial, minimum, and maximum values assigned to variable created by
connections to this port. Higher level settings will take precedence.

9. BREAK_LEVEL, MATCH_LEVEL: The default break level and match_level values for
connections to this subport.

4.10 PARAMETER Statement

The PARAMETER statement is used to assign a numeric or symbolic value to aname. When this nameis
used in any place that can take the parameter name, the value of the parameter is substituted in place of the
name. For example the following two statements:

PARAMETER abc = 12.3 ;

PORT x | NI T=abc ;

have the effect:
PORT x INT=12.3 ;

The parameter statement has the form
PARAMETER namel = substitution_valuel , name2 = substitution value2, ... ;

If a problem and one of its classes have parameters of the same name, the value of the problem's parameter
isused. Similarly, if amacro and one of its classes have parameters of the same name, the value of the
macro's parameter isused. That is, higher level PARAMETER definitions take precedence.

4.11 PROBE statement

Without PROBE, lower level links (e.g., in amacro object) are not visible at higher levels (e.g., a problem
file) unless they are connected through ports. The PROBE statement is provided to allow assigning values
to certain keywords for lower level links from ahigher level. It can aso be used to report such links. See
Section 3.7 (page }i9] for examples.

The PROBE statement has the form

PROBE nane <?port_resolution? | ?link_resolution?> e
I Nl T=val _or_par2 M N=val or_par3 MAX=val _or_par4
BREAK LEVEL=val _or_par5 MATCH LEVEL=val or_par6
| NPUT REPORT
PRED FROM LI NK=<?port _resolution? | ?link_resolution?>
UPDATE_FROM LI NK=<?port _resol ution? |

?link_resol ution?>
VAL=val _or_par;

Here:
1. name: Name of probe.

2. ?port_resolution?: Concatenated object name followed by port.subport name that uniquely
identifies the connection. It has the form:
obj 1 obj2...port.subport.subport_of _subport...

76 « Section 4 SPARK Language Reference

SPARK 1.0 User's Manual

3. 72link_resolution? : Concatenated object name followed by link name followed by subport of link
that uniquely identifiesthelink. It has the form:
obj1 obj2...~link.port.subport.subport_of _subport...
For problem level links this has the form ~link5.subport. subport_of _subport...

4. INIT, MIN, MAX, BREAK_LEVEL, MATCH_LEVEL, INPUT, REPORT,
UPDATE_FROM_LINK, PRED_FROM_LINK, VAL: Same asfor LINK statement.

4.12 DECLARE statement

The DECLARE statement is used to instantiate a class, creating one or more objects. It hasthe form
DECLARE cl ass_nane obj _nanel, obj nane2, ... ;

Here obj_name can be either avalid name or a PARAMETER name that defines avalid name.

4.13 LINK statement

The LINK statement is used to make connections between ports of objects instantiated in this class and/or
port(s) of thisclass. It hastheform

LINK name "link_description" ?entriesl? , ?entries2? , .
, (.sublinkl...){ ?entries3? , ?entriesd4? , ... }
, (.sublinkN...){ ?entrieswv? , ... } ;

The optional (.sublinkl...){ ... } form means that the entriesinside{} apply to the .sublink1... component of
the macro-link. Here, .sublink... isavalid .portal... name for this link. The ?entriesX? contains items from
the following, where at least the ?connection? item must be present:

< GLOBAL_TIME | GLOBAL_TI ME_STEP >

< VAL = val _or_par >
<INT = val _or_par >
< MN = val _or_par >
< MAX = val _or_par >
< PRED FROM LINK = linkFrom | |inkFromsublink... >
< UPDATE _FROM LINK = linkFrom | linkFromsublink... >

?connection?
< BREAK LEVEL
< MATCH LEVEL

_or_par >

= val
= val _or_par >

Note that: INPUT, PRED_FROM_LINK, UPDATE_FROM_LINK, GLOBAL_TIME,
GLOBAL_TIME_STEP qualifiers are mutually exclusive; only one of them may be specified in a LINK
statement.

Here:
1. name: Link name.
2. "link_description" : Description, used by browsers.
3. INPUT : Input the variable created by this link, using link name as input variable name.
4. REPORT : Output the variable referenced by this link, using link name as report variable name.

Section 4 SPARK Language Reference 77

SPARK 1.0 User's Manual

5. VAL =va_or_par : Set the value of the variable defined by thislink to a constant value
'val_or_par'. It assigns the constant value, asiif it isinput, to the variable defined by the LINK
statement. This value can propagate to outside of this classif in the same link statement there are
connection(s) to the port(s) of thisclass. This value can be overridden later by the INPUT or
GLOBAL_TIME keywords referencing the same variable at higher levels.

6. INIT =val_or_par : Givesinitial valueto the variable. If the variable referenced by thislink isa
break variable the value is used only once, in the first Newton-Raphson iteration.

MIN, MAX : Give min, max value to the variable created by thislink.

PRED_FROM_LINK : If the variable referenced by thislink isabreak variable, giveinitial value
to it from the current value of linkFrom. Unlike the INIT keyword, PRED_FROM_LINK supplies
theinitial value for Newton-Raphson for every time step.

9. UPDATE_FROM_LINK : Makesthe variable that is created by current link statement a previous
value variable. Updating occurs at the beginning of the time step, prior to solving the system of
equations. The value of the previous value variable remains the same during Newton-Raphson
iterations.

10. GLOBAL_TIME : Connects the variable referenced by this link to calculation time value (t) that is
specified by run control data.

11. GLOBAL_TIME_STEP :Connects the variable referenced by thislink to calculation time step (dt)
value that is specified by run control data.

12. ?connection? : This specifies either .port_of _this classincluding the resolution of the subport if
necessary e.g. .port_of_this class.port_of_this class.subport..., or connection to a port of an
object declared in this class including the resolution of the subport,e.g.
object.port
object.port.subport...

13. BREAK_LEVEL : Break_level given to this connection.
14. MATCH_LEVEL : Match_level given to this connection.

4.14 INPUT Statement

The INPUT statement is exactly like the LINK statement with the INPUT keyword specified. Itsis merely
an aternative style.

4.15 EQUATIONS statement

The EQUATION statement specifies the equations that are used to generate the C++ functions of this class.
In future versions, this statement may be used by browsers and symbolic processors. It isacompound
statement. An exampleis

EQUATI ONS {
pl.a = x ;
pl.b =y ;
p2 =z ;
X =yhr2 * zr2 , x>0 ;
BAD | NVERSES = vy, z ;

}

Notes:

1. Currently, the parser does not use the Equations section. In future versions, the Functions section
may be optionally generated from the Equations section.

78 ¢ Section 4 SPARK Language Reference

SPARK 1.0 User's Manual

2. Inthisexample, X, y and z are “helper” symbolsto simplify the equation. The notation pl.a means
the a subport of port pl. In addition to the equation relating x, y, and z, we restrict x to positive
values.

3. Currently, SPARK recognizes only one eguation in an atomic class.

4.16 FUNCTIONS statement

The FUNCTIONS statement specifies the C++ functions associated with the ports. It isacompound
statement of the form

FUNCTI ONS {
portl = inverse funl(port2, port3,...) ;
port2 = inverse fun2(portl, port3,...)
PRED = predictor_funl(portl, port2, port3,...) ;
port3 ;
}

Hereinverse funl isthe C++ function that calculates the value of portl from the values of all ports listed
in (port2, port3,...). Similarly for inverse fun2, where the PRED = construct is also specifies the C++
function that calculates the predicted value of port2, as might be used in some types of numerical
integration classes. If thereisno C++ function available for a port, either omit that port under
FUNCTION, or give only the name of the port, e.g., port3 in the example.

4.17 Input From Files

SPARK does not distinguish between constant and time-varying boundary condition variables, i.e., inputs.
All INPUTSs (or LINKswith the INPUT keyword specified) will be sought from .inp files specified for the
problem. To accommodate time varying inputs, the .inp file has the form

n vary varp vars . varp
to valy valy valz . val,
t1 val; val vals . valp
t2 valy valy valz . val,

*

Here var are the variable names defined as inputs and valy are their values at timest;. Constant values have
the same value repeated at each time value. Thefinal linewith only * init is optional, meaning that all
values remain fixed from that point forward.

It is sometimes more convenient to use multiple input files, thus allowing different time stamp sequences.
Theinput files are specified in the InputFiles clause of the probName.run file. See Section 3.4, page
for examples of when this might be useful. At run time, the SPARK solver opens each of the listed files,
which are later searched when looking for input values.

Section 4 SPARK Language Reference « 79

SPARK 1.0 User's Manual

Appendix A Using the HVAC
Tool Kit

A.1 The SPARK HVAC Toolkit

The SPARK HVAC Toolkit is based on the ASHRAE Secondary Systems Toolkit (Brandemuehl 1993),
supplemented with primary equipment models from DOE-2 (LBL 1984). Thislibrary of HYAC
componentsis limited to steady state models. The modelsincluded are listed in Table A.1.

These classes are located in the vspark\hvactk\class directory, or in the vspark\globalclass directory if they
are general in nature and thus apply to awider range of problems. Each class has internal documentation in
the form of a commented header. Y ou should consult this header before using one of these classes. In
addition, these headers are separately provided in rich text format (RTF) in the self-extracting pkzip file
rtflib.exe in vsparkibin. Y ou can examine these by executing this file with the class name you wish to see as
an argument

rtflib cond.rtf <enter>

Thiswill place the documentation for the cond class in the current working directory where it can be viewed
with Microsoft Word, the free Microsoft Word Viewer available from Microsoft, or any other RTF viewer.
Thesefiles are also provided in pdf format for viewing with the Adobe Acrobat Reader.

Many of these classes are lower-level macro or atomic classes from which the user level classes are built.
These are automatically introduced into your problem as needed when you declare an object of the higher
level class.

The SPARK classes in the hvactk\class directory are implemented using normal, atomic ports and links.
Another version of the HVAC class library employs macro links and ports for the same set of classes where
appropriate. These classes are in the hvactkMP\class directory.

A.2 Example Usage

Some examples of using these classes have already been seen in examplesin this manual. For example, we
used the cond.cc classin the room_fc problem in Section 2.7 (See page . In addition, every classhas a
test driver .pr file and associated .inp filein compressed form in pr.exe in vspark\bin. Y ou can access one
of these test drivers by executing pr.exe with the class name as an argument, e.g.,

pr cond. pr <enter>

pr cond.inp <enter>

Appendix A Using the HVAC Tool Kit « 81

SPARK 1.0 User's Manual

Thiswill place the driver problem and input files for cond.cc in the working directory. Alternatively, you
can execute the provided batch file called testhvac.bat to extract, build, and execute the driver. First, you

should go to the vspark\hvactk or other project directory. Then type:
test hvac cond <enter>

Results can be found in cond.out.

Note that the system models provided with the library show relatively complex macro classes that have been

constructed from other Toolkit classes. These also have test driversin the pr.exe compressed file.

Table A.1 SPARK HVAC Toolkit Classes

Class Description

bf _ntu Cail bypass factor vs. an Ntu-like parameter
bound Bound avalue

clipnorm Bound avalue between 0 and 1

capratel Capacitance rate for water

cap_rate Moist air capacitance rate

cclogic Dry vs. wet coil decision logic

cond Generic conductance relation

cpair Specific heat of air

ctrl Cooling tower Fr vs. range dependency

ctr2 Cooling tower Fr vs. approach dependency

diff Difference

dxcap_m | Capacity variation with mass for DX AC unit
dxcap_t DX AC unit capacity variation with outside dry and inside wet bulb temperatures
dxeir_ m EIR variation with mass flow rate

dxeir_t DX AC unit EIR variation with TWb

effclu Ntu-effectiveness, stream 1 unmixed

effcom Ntu-effectiveness, cross flow both mixed

effcbu Ntu-effectiveness, cross flow both unmixed
effctr Ntu-effectiveness for counter flow

effncy Forcestwo inputsto sumto 1.0

effntul Exponential effectivenessvs. Ntu

effprl Ntu-effectiveness for parallel flow

eintrpl Exponential interpolation

eirl_oc Curvefit for eirl in open centrifugal compressor
eir2_oc Curvefit for eir2 in DOE-2 open centrifugal compressor
enthal py Enthalpy, dry bulb, humidity relation.

82 « Appendix A Using the HVAC Tool Kit

SPARK 1.0 User's Manual

enthvap Enthalpy of water vapor

enthwat Enthalpy of water

eq3l Equation 31 of ASHRAE HOF, Ch. 6

equal Equality

fflp_blr Boiler part load curve fit

fflp_dd Fraction of full load power for discharge damper fan
fflp_iv Fraction of full load power for inlet vane fan
fflp_vsd Fraction of full load power for variable speed drive fan
htxeff SPARK Heat exchanger effectiveness object
htxtemp Temp vs. capacity flow vs. effectiveness

humratio Humidity ratio vs. partial pressure of vapor

idealgas Ideal gaslaw

indep_fr Independent fractions

lat_rate Latent heat rate object.

lintrp Linear interpolation

lintrpl Linear interpolationto 1

logl0 SPARK log base-10 object.

max2 SPARK maximize object for two arguments

min2 SPARK minimum object for two arguments

neg SPARK negation object

polyn3 3rd degree polynomial

poslim Force to be positive

pow SPARK exponentiation object.

propcont Proportional controller

rcap_oc Curvefit for capacity in open centrifugal compressor
rho Moist air density vs. specific volume & humidity ratio
rhomoist Moist air density vs. dry bulb and humidity ratio
safprod SPARK safe product object

safquot SPARK safe quotient object

safrecip Safe reciprocal

satpress Saturated pressure relationship for water.

satp_hw Saturated Pressure (Hyland & Wexler)

satp r Saturated pressure of water vapor, residual method.
select Logicad if-then-else

Appendix A Using the HVAC Tool Kit

83

SPARK 1.0 User's Manual

sercond Conductorsin Series

square Square of avalue

sum SPARK sum object

balance Transport balance equation

dewpt Dew point relationship for moist air using Walton's Saturation correlation

dewp_hw | Dew point using Hyland & Wexler saturation correlation.

enthsat Dry bulb vs. enthalpy at saturation

relhum Relative humidity

relh_hw Relative humidity (Hyland & Wexler)

specvol Specific volume of air

wetbulb SPARK object defining the wet bulb temperature process.

wetb_ hw | Wet Bulb (Hyland & Wexler)

gendiv SPARK generic diverter object.

diveim Diverter. Splits a flow stream into two streams.

mixer Mixing box model for moist air

bf Coil bypass ratio relationships

bf _adp Bypass factor/apparatus dew point coil model

pumpsim | Simple pump

ctfunc Cooling tower model correlation.

fann_dd Discharge damper fan, mass flow-enthal py interface

fann_iv Inlet vane controlled fan, mass flow-enthal py interface

fann_vsd | Variable speed drive fan, mass flow-enthal py interface

fansm_n | Simple fan- part load coefficient & enthalpy/mass interface

fansim Simple fan with part 1oad coefficients in the interface

fan_dd Discharge damper fan, volume flow -temperature interface

fan_iv Inlet vane controlled fan, volume flow -temperature interface

fan_vsd Variable speed drive fan, volume flow -temperature interface

htxclu Cross flow, stream 1 unmixed heat exchanger model

htxcbm Cross flow, both streams mixed heat exchanger model

htxcbu Cross flow, both streams unmixed heat exchanger model

htxctr Counter flow heat exchanger model

htxprl Parallel flow heat exchanger model

enthxclu Enthalpy exchanger model, cross flow, one stream unmixed

enthxcbm | Enthalpy exchanger model, cross flow, both streams mixed
84 « Appendix A Using the HVAC Tool Kit

SPARK 1.0 User's Manual

enthxcbu Enthalpy exchanger model, cross flow, both streams unmixed
enthxctr Enthalpy exchanger model, counter flow

enthxprl Enthalpy exchanger model, parallel flow

humeff Humidity exchanger effectiveness

humex Humidity exchanger model

drcclu Dry cail, cross flow, stream 1 unmixed

drccbm Dry cail, cross flow, both streams mixed

drccbu Dry cail, cross flow, both streams unmixed

drcctr Dry cail, counter flow

drcprl Dry cail, paralle flow

wecoilout Wet Coil Leaving Conditions

wtcclu Wet Cooling/dehumidification Coil, cross flow, one stream unmixed
wtccbm Wet Cooling/dehumidification Coil, cross flow, both streams mixed
wtccbu Wet Cooling/dehumidification Coil, cross flow, both streams unmixed
wtcctr Wet Cooling/dehumidification Coil, counter flow

wtcprl Wet Cooling/dehumidification Coil, parallel flow

drywet Dry/Wet Cooling Coil Model

indevap Indirect evaporative cooler

tower Cooling tower model

evaphum Evaporative humidifier/cooler

airhx Air to air heat exchanger

ccsim Simple cooling coil model

acdx Direct expansion air-conditioning unit model

econ Economizer

boiler Boiler

cchiller DOE-2 single-stage compression chiller

vlvcirc Flow circuit with non-linear valve and series flow resistance
zone Simple steady-state zone model

vavsys VAV System

zone _dd Dual-duct controlled zone

ddhtbal Dual-duct zone convergence enhancer

varmix Variable mixing box

tstdhb Test driver for ddhtbal

ddsys Dual-duct (DD) System

Appendix A Using the HVAC Tool Kit

85

SPARK 1.0 User's Manual

cvrhsys Constant volume reheat system

polyn3 3rd degree polynomial

bfd Backward-forward difference integration object
room Simple room with heat loss and air mass

bfd Backward-forward difference integration object

86 ¢ Appendix A Using the HVAC Tool Kit

SPARK 1.0 User's Manual

Appendix B Preference Files

B.1 What are Preference Files?

Preferences file are external representations of objects of class PrefList. This C++ classis designed to
allow storage and retrieval of (key, value) pairs, somewhat like a mapping. However, this class differs from
atypical mapping in that it allows an hierarchical description of information. The example below will allow
you to better understand the structure and format of SPARK preference files.

B.2 Uses of Preference Files in SPARK

Preference files are used several placesin SPARK to store information about important aspects of the
problem and how it isto be solved. For example, every SPARK problem has a probName.prf file that gives
information about the problem component structure, and how each component is to be solved (See Section
3.10.1, page . Also, each problem has a run control file probName.run (See Section 3.14, page E5) with
information about the simulation interval and other control issues. In some environments, a global spark.prf
stores critical information about the SPARK installation. Here we explain the general format of all
preference files.

B.3 Hierarchical Data

As an example, consider the need to store the description of abuilding. The building isto have a Name, a
Roof, a Floor, and an arbitrary number of Walls. Although the Name has a simple string value, e.g.,
“MyBIdg”, Roof, Floor and every Wall has two attributes, U and W.

Figure B.1 shows thisinformation as a general tree. It can also be thought of as an object called
theBuilding. Every node in thistree can be viewed as a key, and the list of child nodes can be viewed as the
value of that key. Thus theBuilding has a value which isthe list (Name, Roof, Walls, Floor), each of which
isanother tree. In turn, the root of each of these trees can be thought of as another key with its own value.
The key Name has a single value, myBldg, and the key Roof has the value which isthe list (U, W), each of
whichisatree. The U and W keys at the roots of these trees each have asingle value, (1.2) and (1.0)
respectively. Note that nodes in the tree like myBldg, 1.2, and 1.0 are distinctly different from nodes like
Name or Root in that they have no children, i.e., they are leaves. Another way of saying thisisthat the
“value” of anode like myBldg or U consist of an empty list (). These are the actual data stored in the
structure. Note also that the path from the root to any leaf is a unique identifier of the datain the leaf. For
example, theBuilding.Roof.U identifies the value 1.2.

Appendix B Preference Files ¢ 87

SPARK 1.0 User's Manual

theBuilding
Name Roof Walls Floor

North East South

o ltw] [Tullw U W
05 21 =1 12 =1

Figure B.1 Smple Building Represented asa Tree

B.4 Preference File for the Example

The preference file expresses this tree structure astext. The preferencefile for thetreein Figure B.1is
shown below.

The format follows the convention that a key is followed by alist representing its value, enclosed in
parentheses. If thelist is empty, indicated by empty parentheses, the implication is that the key isin fact
actual data. Note that the key representing the file itself, in this case theBuilding, is not part of the stored
data. Thisis because externally the operating system will know it by the assigned file name, and programs
that read preference files assign the file contents, i.e., its value, to an instance of prefltem class.
Consequently, it is not useful to store the namein the file itself, and the file content begins with an opening
parenthesis, and ends with a closing parenthesis. With these conventions, here is the file for theBuilding:

(
Nanme (nyBldg ()

)
Roof (
U((l.2 ()
)
W(1l.0 ()
)
)
walls (
North (
U((l.2 ()
)
W (0.5 ()
)
)
Sout h (

88 ¢ Appendix B Preference Files

SPARK 1.0 User's Manual

U((l.2 ()
)
W (0.5 ()
)
)
East (
U((l.2 ()
)
W(0.5 ()
)
)
West (
U((l.2 ()
)
W (0.5 ()
)
)
)
Fl oor (
U((l.2 ()
)
W(5.0 ()
)
)

)

Since theBuilding tree has four first-level nodes, between file opening and closing parenthesis there are four
main clauses, each consisting of a key followed by a parenthetic expression representing the value of the
key. Thefirst-level keys are the nodes in the tree, Name, Roof, Walls, and Floor. The Name key has a
simple value, the building name string “myBIdg”, so it is followed by a empty parentheses. Note that the
format is delimited entirely by the parentheses so spacesin strings are allowed, and no quoting is necessary.
The Roof and Floor keys have values that are trees with nodes representing U and W. The U and W keys
have simple values, so they are followed by empty parentheses. The Wallsidentifier has a more complex
structure, namely four trees, each with a structure like Roof and Floor.

Appendix B Preference Files ¢ 89

SPARK 1.0 User's Manual

References

Anderson, J. L. (1986). A Network Language for Definition and Solution of Smulation Problems,
Lawrence Berkeley Laboratory.

Brandemuehl, M. J. (1993). HVAC 2 Toolkit: A Toolkit for Secondary HVAC System Energy Calculations,
Joint Center for Energy Management, University of Colorado.

Buhl, W. F., A. E. Erdem, et a. (1993). “Recent Improvements in SPARK: Strong Component
Decomposition, Multivalued Objects, and Graphical Interface.” Proceedings of Building Smulation '93,
Adelaide, International Building Performance Simulation Association. Available from Soc. for Computer
Simulation International, San Diego, CA.

Char, B. W., K. O. Geddes, et al. (1985). First leaves: a tutorial introduction to Maple, in Maple User's
Guide. Waterloo, Ontario, WATCOM Publications Ltd.

Conte, S. D. and C. de Boor (1985). Elementary Numerical Analysis: An Algorithmic Approach. McGraw-
Hill Publishing Co.

Dennis, J. E. and Schnabel, R. B. (1996). Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Classicsin Applied Mathematics 16, SIAM.

LBL (1984). DOE-2 Reference Manual, Lawrence Berkeley Laboratory.
McHugh, J. (1990). Algorithmic Graph Theory. Englewood Cliffs NJ 07632, Prentice Hall.

Nataf, J.-M. and F. C. Winkelmann (1992). Automatic Code Generation in SPARK: Applications of
Computer Algebra and Compiler-compilers. Berkeley, CA, Simulation Research Group, Lawrence
Berkeley Laboratory.

Nierstrasz, O. (1989). “Survey of Object-Oriented Concepts.” Object-Oriented Concepts, Databases, and
Applications. W. Kim and F. H. Lochovsky. New Y ork/Reading, ACM Press/Addison-Wesley: 3-21.

Press, W. H., B. P. Flannery, et a. (1988). Numerical Recipesin C. Cambridge, Cambridge University
Press.

Rand, R. H. (1984). Computer Algebra in Applied Mathematics: An Introduction to MACSYMA. Boston.

Sahlin, P. and E. F. Sowell (1989). “A Neutral Format for Building Simulation Models.” Proceedings of
Building Smulation '89, Vancouver, BC, International Building Performance Simulation Association.

Sen, W. T. (1994). untitled draft. Singapore.

References ¢ 91

SPARK 1.0 User's Manual

Sowell, E. F. and W. F. Buhl (1988). “Dynamic Extension of the Simulation Problem Analysis Kernel
(SPANK).” Proceedings of the USER-1 Building Smulation Conference, Ostend, Belgium, Soc. for
Computer Simulation International.

Sowell, E. F., K. Taghavi, et al. (1984). “Generation of Building Energy System Models.” ASHRAE Trans.
90(Pt. 1): 573-86.

92 « References

SPARK 1.0 User's Manual

Glossary of Terms

Algorithmic programming

A sequence of operations and assignments leading from prescribed inputs to prescribed outputs.

Assignment
In computer languages, assignment is the action whereby avalue is associated with an identifier
representing a variable. Although the symbol "=" is often used for assignment, e.g., X = 2*y, assignment is

different from mathematical equality because the latter implies that the expressions at the left and right of
the "=" symbol are always equal. In particular, a sequence of assignments are order dependent, while a set
of mathematical equations are not. See algorithmic programming.

Atomic classes

A model comprising a single equation with used variables linked to its ports. Acts as a template for
instantiation of atomic objects.

Break level

An integer 0-10 expressing the desirability of using the associated link to break cycles in the computation
graph.

Class

A general description of an equation (atomic class) or group of related equations (macro class). A class acts
as atemplate for instantiation of objects.

Continuous variable

Variable that can take on any real value within arange.

Cut set

A set of variables (links) that will break all cyclesin the computation graph. SPARK attempts to minimize
the cut set size. The associated variables are called "break variables' and are used for iterative solution.

Glossary of Terms ¢ 93

SPARK 1.0 User's Manual

Differential algebraic equation system (DAES)

A system of differential and algebraic equations for simultaneous solution.

Discrete state variable

A variable that can take on only specific values rather than any real value within arange.

Dynamic variables
A variable for which the derivative appearsin a differential equation.

Graph
See mathematical graphs.

Il posed
A problem that is not well posed is said to beill posed. See Well posed.

Implicit inverse

A form of an equation in which a particular variable is on the left, but also occursin theright side
expression. Used when explicit inverses cannot be obtained. Solution requires iteration.

Initialization
Value of variable at Initial Time. Required for dynamic variables, and for break variables.

InitialTime

The time when simulation starts. That is, the time at which initial conditions for differential equations
apply.

Input/output free

A style of model expression which provides a set of equations rather than an algorithm. Since any set of
inputs that leads to awell posed problem can be specified in conjunction with these equations, it is
sometimes called input/output free.

Instantiate

To create an object instance based on the class definition. The declare keyword performsinstantiation in
SPARK.

94 « Glossary of Terms

SPARK 1.0 User's Manual

Integration formula

A formula used in numerical solution of differential equationsto calculate a value for the integration
variable at the next point in time. Can be explicit, in which the new value appears only on the | eft, or
implicit in which case the new value and or the new derivative appears also in the right side expression.

Interface variable

A variable defined in a class that is to be visible from outside. Interface variables are defined with the port
keyword.

Inverse

Precisely, aform of an equation in which a particular variableisisolated on one side; i.e., aformulafor a
variable. In SPARK, we use the term explicit inverse for such aformula. See also Implicit inverse.

Jacobian

Square matrix of partial derivatives of residual equations with respect to the break variablesin a strongly
connected component.

Macro classes

A group of SPARK atomic or other macro classes linked together through their respective portsto form a
subsystem model. A macro class can be use wherever an atomic class can be used.

Match level

An integer 0-10 expressing the desirability of matching the associated link variable with the associated
object port.

Mathematical graphs

A structure comprising aset of vertices (nodes) and edges (arcs) which connect them. Often used to model
systems of interacting entities.

Object oriented

Modeling methodology in which the model behavior and data are encapsulated in a model entity
comparable to the physical entity that it represents. Communicates with other parts of the model only
through its interface ports.

Parser
The program that interprets the SPARK input files as the first step toward solution.

Glossary of Terms ¢ 95

SPARK 1.0 User's Manual

Prediction

Value of break variable at beginning of iterative solution. Defaults to value at previous time step if not
specified aspred_from_link.

Propagation

Process by which SPARK infers certain link or port statement settings, e.g., init, max and min, from settings
at lower or higher levels with respect to macro classes and problem specifications.

Relaxation coefficient

Multiplier, usually afraction, on calculated correction that is actually applied in order to get new break
variable values during iterative solution.

Retained state

Vaue that needs to be saved between successive uses of an object. Currently, SPARK objects cannot retain
state internally. However, values of link variables are retained for 4 previous time steps. State can also be
retained through use of the update_from_link concept.

Solver

The executable program that SPARK builds to solve a particular problem. Called probName.exe
(Windows) or probName (UNIX). The underlying programs used by SPARK in constructing executable are
also referred to as “the solver” in places.

Strong component

Short for strongly connected component. In graph theory, amaximal set of vertices and edges that allow any
vertex in the set to be reached from every other vertex. In SPARK, corresponds to a separately solvable
sub-problem, discovered automatically.

Symbolic manipulation

Operations on mathematical expressionsin terms of contained symbols, as opposed to numerical evaluation.
The goal might be solution for one or more symbols in terms of the others. Often done with computer
software, i.e., computer algebra.

Updating

Setting value of Previous Vaue Variable to the previous value of variable specified with the
update_from link keyword. Occurs at beginning of time step, before solving the components.

Well posed

A problem is said to be well posed if it admits at least one solution. One requirement is an equal number of
equations (objects) and unknowns (links). There also must be a complete matching, i.e., amatching of each

96 ¢ Glossary of Terms

SPARK 1.0 User's Manual

variable to a unique equation inverse. However, problems can meet these requirements and still not be well
posed. For example, y=f(x) and y = g(x) may not intersect.

Glossary of Terms ¢ 97

SPARK 1.0 User's Manual

Index

', 48

. 21, 46-48, 75

~tilde, 48

aproblem specificationfile, 2, 7, 9, 61

algebraic problems, 3

alias, 16

as break variables, 35, 38, 40, 4244, 53-54, 58, 61, 64
atomic class, 2, 16, 41, 50, 52, 71, 73, 79

class, 2, 5, 1012, 14-17, 41, 50, 77, 81

compiler, 2, 15-17, 91

component, 10, 13, 20, 35, 53-59, 63, 66, 87
component settings, 59

computation graph, 19

congt, 16

constant values, 33, 79

continuous systems, 1

Convergence, 13-14, 35, 42, 53, 57, 59-63, 65, 85
cut set, 39, 53, 56, 60-61

declare, 6, 20, 73, 77

Default, 2, 3940, 42, 44, 49, 53-57, 6063, 66, 72, 74
derivative, 23-24, 26-27, 37, 58

diagnostic level, 59

DiagnosticLevel, 7, 63, 66

differential equations, 2, 2223, 25-26, 37, 39, 43, 53
dot, 21, 4648, 75

dynamic, 7, 22-25, 27, 37, 39-40, 4243, 64, 92
equations block, 15

equationsfile, 10, 12

Euler, 23-24, 26, 37, 52, 59

explicit, 23, 26, 51, 59

Files, 7, 10, 22, 33, 37, 3940, 42-44, 47, 48, 52, 63-65, 73, 79, 81, 88

frst_ord, 26, 66

Index « 99

SPARK 1.0 User's Manual

globalclass, 6, 17, 23, 28, 81

gnuplot, 64

graph, 3, 10, 19-20, 38, 53, 61

Homotopy, 54-55, 58

HVAC Toolkit, 17, 30, 47, 81

il posed, 13

implicit, 23-24, 51, 60

init, 25, 33-35, 3940, 4243, 49, 51-52, 72, 74
Initial Values, 17, 22, 25, 35, 37-40, 4344, 60
initialization, 3940, 65

Initia Time, 7, 25, 28, 35, 3742, 44, 53, 64-66
input, 6, 8, 10, 13, 19, 25, 33-36, 37, 42-43, 46, 74, 76
input file, 7, 8-10, 25, 33-35, 3940, 43-44, 64, 66
integration formula, 23, 27, 37-38, 52

inverses, 2, 10, 15, 50, 60

Iterative Solution, 11, 13, 24, 38, 41, 49, 53, 55-58, 62
Jacobian, 38, 53-55, 58, 62

link, 6, 8, 13, 19, 22, 35, 40, 73

Link Names, 21, 4748

macro classes, 20-22, 42, 4748, 52, 73

Macro Links, 44, 47, 48, 81

macro ports, 4447

match_level, 12, 49, 61, 74

matching, 3, 10, 19-20, 38, 53, 61
mathematical graphs, 2

max, 42, 49, 51, 74

min, 42, 49, 51, 74

mixer, 20, 22, 45, 47-48, 84

Newton-Raphson, 13, 38-39, 53-58

NOERR, 45, 47, 74

object, 1-2, 5-6, 8-9, 13, 15-17

object oriented, 1

ordinary differential equations, 2, 22

past values, 23-24, 40, 53

perturbation, 58-59

Portability, 2

ports, 5, 15, 33, 42, 73

prediction, 13, 39-41, 43

prefix symbols, 48

previous time, 23-24, 37, 39, 41, 44, 52
previous value variable, 41, 51-53, 78
propagation, 42, 47

reference variable, 16

Relaxation coefficient, 54-56, 59

100 « Index

SPARK 1.0 User's Manual

report, 63-65, 76

retained state, 17

round-off error, 59

run control, 7, 22, 25, 44, 59, 63, 64-66, 78, 87
run control file, 7, 25, 6466

scale, 54, 58

scaled tolerance, 58

single quote, 48

snapshot, 63, 6466

stopping criterion, 57

strongly connected components, 10
subports, 45-46, 48, 74

symbolic inversions, 13

symbolic tools, 2, 14, 16

time step, 22-23, 25-27, 37-38, 41, 51-53, 59, 63, 78
time unit, 33

time varying inputs, 43, 79
tolerance, 5560, 63, 66

Toolkit, 81

trace File, 62

Units, 17-19, 25, 33, 45, 51, 75
UNIX, 2, 7,53

update, 39, 41, 51, 59, 66, 78
update from_link, 3941, 51-52, 76
Valid Range, 17

well posed, 1314, 39, 60

wgnuplot, 26

Index « 101

SPARK 1.0 User's Manual

Notice

SPARK is copyright by The Regents of the University of Californiaand by Ayres Sowell
Associates, Inc. and made available under policies established by the Lawrence Berkeley National
Laboratory and the U.S. Department of Energy.

Thiswork was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy,
Office of Building Technology, State and Community Programs, Office of Building Systems of the
U.S. Department of Energy, under contract DE-ACO03-76SF00098.

The Government is granted for itself and others acting on its behalf a paid-up, nonexclusive,
irrevocable, worldwide license in this data to reproduce, prepare derivative works, and perform
publicly and display publicly. Beginning five (5) years after (date permission to assert copyright
was obtained) and subject to any subsequent five (5) year renewals, the Government is granted for
itself and others acting on its behalf a paid-up, nonexclusive, irrevocable, worldwide license in this
data to reproduce, prepare derivative works, distribute copies to the public, perform publicly and
display publicly, and to permit others to do so. NEITHER THE UNITED STATES NOR THE
UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF THEIR EMPLOYEES,
MAKESANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL
LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY
OWNED RIGHTS.

The SPARK simulation program is not sponsored by or affiliated with SPARC International, Inc.
and is not based on SPARC architecture.

Notice « 103

	Section 1 Introduction
	1.1 What is SPARK?
	1.2 Kinds of Problems
	1.3 Describing Problems for SPARK Solution
	1.4 Portability and User Interfaces
	1.5 The History of SPARK

	Section 2 Examples
	2.1 Overview and Terminology
	2.2 Simple Math Problems
	2.2.1 A Single Object Example
	2.2.2 Arbitrary Input/Output Designation
	2.2.3 Problems with Several Objects
	2.2.4 Problems Requiring Iterative Solution

	2.3 Well Posed Problems
	2.4 Creating SPARK Atomic Classes
	2.4.1 Class Definition
	2.4.2 Inverse Functions Definition

	2.5 Models of Physical Systems
	2.5.1 Units, Valid Range, and Initial Values
	2.5.2 Macro Objects

	2.6 Differential Equations
	2.6.1 Numerical Solution of Differential Equations
	2.6.2 How SPARK Deals with Differential Equations
	2.6.3 Solving a Simple Differential Equation
	2.6.4 SPARK Library Integrator Object Classes
	2.6.5 Creating SPARK Integrator Object Classes

	2.7 A Larger Example: Air-Conditioned Room

	Section 3 Advanced Topics
	3.1 Numerical Integration Issues
	3.2 Iterative Solution and Break Variables
	3.3 How SPARK Assigns Values to Variables
	3.3.1 Initialization
	What Must be Initialized
	What Might Need Initialization
	How to Specify Initialization

	3.3.2 Prediction
	Where Prediction is Needed
	How Prediction is Specified

	3.3.3 Updating
	What Needs to Be Updated
	How Updating is Specified

	3.3.4 Solution
	What Needs to Be Solved For
	How Solution Is Specified

	3.3.5 Propagation

	3.4 Input Values from Files
	3.5 Macro Links
	3.6 Internal SPARK Names for Variables (Full Names of Links or Ports)
	3.7 Using the Probe Statement
	3.8 Symbolic Processing
	3.8.1 Simple Symbolic Processing
	3.8.2 Generating an Inverse
	3.8.3 Caveats

	3.9 Previous Value Variables, or Updating Variables from Links
	3.10 Solution Method Control
	3.10.1 SPARK Problem Components
	3.10.2 Default Settings
	3.10.3 Component Solving Methods
	3.10.4 Matrix Solving Methods
	3.10.5 Stopping Criterion for Iterative Solution
	3.10.6 Scaled Perturbation for Partial Derivatives
	3.10.7 Update Component Settings at Run Time

	3.11 Debugging SPARK Programs
	3.11.1 Parsing Errors
	3.11.2 Setup Errors
	3.11.3 Solution Difficulties
	3.11.4 Trace File Mechanism
	3.11.5 Problem-level Diagnostic Reports

	3.12 Output and Post Processing
	3.13 Snapshot Files and Restarting Solutions
	3.14 Run Control File
	3.15 Using SPARK library functions in an atomic class
	3.15.1 Error handling functions
	3.15.2 Predicate functions
	3.15.3 Access functions
	3.15.4 Math functions
	3.15.5 Access methods for the TArgument class

	Section 4 SPARK Language Reference
	4.1 Notation Used in this Section
	4.2 Special characters
	4.3 Names and Other Strings
	4.3.1 Reserved Names
	4.3.2 Rules for User Specified Names
	4.3.3 Literals

	4.4 Comments
	4.5 Compound Statements
	4.6 Atomic Class File
	4.7 Macro Class File
	4.8 Problem File
	4.9 PORT Statement
	4.10 PARAMETER Statement
	4.11 PROBE statement
	4.12 DECLARE statement
	4.13 LINK statement
	4.14 INPUT Statement
	4.15 EQUATIONS statement
	4.16 FUNCTIONS statement
	4.17 Input From Files

	Appendix A Using the HVAC Tool Kit
	A.1 The SPARK HVAC Toolkit
	A.2 Example Usage

	Appendix B Preference Files
	B.1 What are Preference Files?
	B.2 Uses of Preference Files in SPARK
	B.3 Hierarchical Data
	B.4 Preference File for the Example

	References
	Glossary of Terms
	Algorithmic programming
	Assignment
	Atomic classes
	Break level
	Class
	Continuous variable
	Cut set
	Differential algebraic equation system (DAES)
	Discrete state variable
	Dynamic variables
	Graph
	Ill posed
	Implicit inverse
	Initialization
	InitialTime
	Input/output free
	Instantiate
	Integration formula
	Interface variable
	Inverse
	Jacobian
	Macro classes
	Match level
	Mathematical graphs
	Object oriented
	Parser
	Prediction
	Propagation
	Relaxation coefficient
	Retained state
	Solver
	Strong component
	Symbolic manipulation
	Updating
	Well posed

	Index
	Notice

